Constant wall temperature /homogeneity in wall temperature is the need of various lab-on-chip devices employed in biological and chemical investigations. However method to maintain this condition does not seem to be available. In this work, a novel and simple way of maintaining constant wall temperature is proposed. A diverging microchannel along with conjugate effects is utilized towards this end. Both measurements and three dimensional numerical simulations are undertaken to prove the design. The investigation has been carried out over a large parameter range (divergence angle: 1–8°; length: 10–30 mm; depth: 86–200 μm; solid-to-fluid thickness ratio: 1.5–4.0, and solid-to-fluid thermal conductivity ratio: 27–646) and input conditions (mass flow rate: 4.17 × 10−5 −9.17 × 10−5 kg/s, heat flux: 2.4–9.6 W/cm2) which helped in establishing the finding. It is observed that a nearly constant wall temperature condition can be achieved over a large parameter range investigated. A model to arrive at the design parameter values is also proposed. The method is further demonstrated for series of microchannels where we successfully maintain each station at different temperature within ±1 °C. The finding is therefore significant and can be employed in both single and multi-stage processes such as PCR requiring different constant wall temperature with a fine resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.