Gluten, protein and amino acid composition play an important role in grain quality assessment. Areas of interest of our research include essential amino acids, which are not synthesized in the human body. It is a commonly known fact that large doses of mineral fertilizers increase grain crops’ yield and quality. However, fertilization leads to undesirable effects—in particular, environmental pollution. This creates a need to replace mineral fertilizers, at least partially, with alternative methods. One such method is the use of microbial preparations in modern technologies for growing cereals. This research, therefore, aimed to study the effect of presowing seed inoculation with a microbial preparation (based on phosphate-mobilizing bacterium Lelliottia nimipressuralis CCM* 32-3) on T. aestivum grain quality, namely the content of gluten, protein and amino acids. The analysis of three-year field experiments showed that the highest values were obtained when using the microbial preparation against the background of mineral fertilizers at the rate of P30. Presowing seed inoculation contributed to a significant increase in grain productivity (by 31.5% compared to control). The content of protein and gluten in the grain also increased up to 12.5 % and 28.0%, while in the control, these figures were 10.8% and 21.2%, respectively. Moreover, the total content of amino acids in wheat grain in the variant inoculation + fertilizers (P30) was the highest compared to those without inoculation. The following excess was noted: by 52% compared to control (without fertilizers); and by 29%, 17% and 10% in variants with mineral fertilizers at the rate of P30, P60, and P90, respectively. The obtained research results indicate that the combined application of mineral fertilizer Ammophos (at the rate of P30) and microbial preparation based on the phosphate-mobilizing bacterium L. nimipressuralis CCM 32-3 for presowing seed inoculation is an effective technique that improves the yield and quality indicators of winter wheat grain under the conditions of southern regions with insufficient moisture supply.
The mineral composition of Allium cepa L. leaves was measured by using the scanning electron microscope of Japanese company JEOL, model JSM600LA with EDS system. 11collection samples of FRC “All-Russian Institute of Plants Genetic Resources named after N. I. Vavilov” and 4 samples of FSBSI “Research Institute of Agriculture of the Crimea” were studied. 12 main elements (in mass., %) contained in onion leaves were evaluated. The samples with the maximum macro- and micronutrient elements accumulation in the leaves used for the sourthern subspecies breeds and hybrids selection were revealed. These samples can be used to prevent the elements deficiency in the human body. The following samples number with a high accumulation of the elements in the leaves was revealed: K – nine (from 20.0 to 3.3 max %: B12132B, trimontzium, Rouge pale, Red Wetherstfield, Blood red flat, Valensiya, Tavricheskiy, Yaltinskiy lux, Yaltinskiy rubin), P – five (from 1.8 to 2.8 mass., %:B12132B, Mestniy, Valensiya, Yaltinskiy lux, Yaltinskiy rubin), Mg – one (2.23 mass., %: Rouge pale), Ca – nine (from 5.4 to 8.3 mass., %: Mestniy, Rouge pale, Mestniy, Red Wetherstfield, Blood red flat, Valensiya, Brown Beauty, Yaltinskiy lux and Yaltinskiy rubin), Fe – two (from 0.5 to 0.8 mass., %: B12132B, Tavricheskiy), S – seven (from 2.2 to 2.5 mass., %: B12132B, Mestniy, Red Wetherstfield, Tavricheskiy, Yaltinskiy lux, Yaltinskiy rubin, Yaltinskiy model No. 3), Na – two (from 1.3 to 1.5 mass., %: B12132B, Mestniy), Cl – five (from 4.0 to 7.0 mass., %: Mestniy, B12132B, Trimontzium, Red Wetherstfield, Yaltinskiy model No. 3), Cu – one (1.9 mass., %: Yaltinskiy model No. 5), Mo – eight (from 5.2 to 7.0 mass., %: Tavricheskiy, Yaltinskiy lux, Yaltinskiy rubin, Yaltinskiy model No. 3, Mestniy, Trimontzium, Red Wetherstfield, and B12132B), Zn – seven (from 0.5 to 4.97 mass., %: Yaltinskii model No. 3, Mestniy, B12132B, Rouge pale, Blood red flat, Brown Beauty, Yaltinskiy rubin) and Si – one (0.5 mass.%,%: Yaltinskiy lux). The order of the elements accumulation variation in the onion samples was distributed as follows: Zn > Fe > Si > Na > P > Cl > Mo > Mg > S > Ca > Cu > K.
Agricultural technologies aimed at reducing the tillage can be adopted as safer farming methods to preserve and improve the diversity of soil microbial communities. The area under the promising resource-saving no-till system (direct sowing) is increase in the conditions of the Steppe annually. The use of herbicides in such a farming system causes a negative effect on the soil biocenosis. But the introduction of agronomically useful microorganisms into the rhizosphere are increasing the resistance of plants against stress factors, their yields and product quality, and preserving soil fertility. The objective of this research was to assess the state of microbiocenosis of southern chernozem under the influence of no-till system and a complex of microbial preparations. The influence of direct sowing and microbial preparations on the state of microbocenosis of southern chernozem was established. The number of cellulolytic microorganisms increased under the influence of farming systems in comparison with the virgin soil. The use of microbial preparations contributed to an increase in the number of microorganisms of ecological and trophic groups and the representation of the majority of phyla, which also depended on the system of agriculture. A decrease in the representation of Acidobacteria and Verrucomicrobia and an increase in Firmicutes and Proteobacteria were observed in comparison with virgin soil.
The goal of the research is to study the effect of Pisum sativum L. seeds treatment before sowing with a complex of microbiological preparation, in comparison with a chemical treatment, on the parameters of plants growth, product quality, and yield, against the background of the system of agriculture without soil tillage. The research was conducted in 2016-2018 in the zone of Central Steppe of Crimea. Trial establishment and researches were carried out in accordance with the generally common methods of field experiments in land husbandry and plant growing. In 2016, the symbiosis of Pisum sativum L plants and the microbial community had a significant impact on the number of beans per plant: the control was 7.6 pieces on 1 plant, and under the influence of complex microbial preparation is 8.6 units per 1 plant (LSD05 – 0,92). The weight of grain from 1 plant was significantly higher by 0.5 g on the variant with inoculation. In 2017 on plant height there is a slight increase in growth when treated with the preparation by 4.4 cm (LSD05 – 5,03). The same thing happens with the number of beans of 8.2 and 8.6 units on the same plant that shows at LSD05 – 1.59, the accuracy increase of this parameter at 0.4 units per plant in the variant with inoculation. Severe weather conditions during the vegetation of Pisum sativum L. in 2018 contributed to the fact that the microbial preparation studied by us practically did not affect the studied indicators of growth and productivity.
The primary task when breeding new varieties of essential-oil-bearing rose is to increase the essential oil content and quality. The purpose of the present research is to study the essential-oil-bearing rose collection variability in terms of the essential oil content and component composition and to identify opportunities for isolating the specimens promising for selection. The study of a collection of 112 specimens was carried out in 2017–2020 in the context of the piedmont of Crimea. The decanted essential oil content was determined using the hydrodistillation method. The component composition of rose essential oil was analyzed by gas chromatography on Crystal 5000.2. The essential oil components were identified by comparing their Kovats retention indices to the literature values. A high variability in the essential oil content in the collection (Cv = 36.3% at the average, over 4 years) and the major components content in the essential oil (Cv = 22.1–45.9%) was found. In the context of the piedmont of Crimea, the major components’ percentage content in essential oil from all the specimens including the five Bulgarian varieties did not meet the GOST ISO 9842-2017 standard requirements. This is indicative of a high-degree sensitivity to the soil and weather conditions in the region. It was found that the citronellol, geraniol, and nerol content in essential oil dropped significantly in extreme high temperature and drought conditions. Seven specimens rich in essential oil contained in the raw plant material (0.030–0.049%) and thirteen specimens with a high yield of concrete (0.31–0.39%) were identified and have been recommended for inclusion in the breeding process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.