Expression of choline acetyltransferase, 200-kDa neurofilament protein, 28-kDa calbindin, neuronal NO synthase, caspase 3, and Ki-67 in the motor neurons of spinal cord segments T3-T5 in male C57Bl/6 mice after 30-day space flight in the Bion-M1 biosatellite was studied by immunohistochemical methods. Under conditions space flight, the size of motoneurons increased, the number of neurons containing choline acetyltransferase and neurofilaments, decreased, and the number of calbindin-positive neurons increased; motoneurons, expressing neuronal NO synthase and caspase 3 appeared, while Ki-67 was not detected. Fragmentation of neurons with the formation structures similar to apoptotic (residual) bodies was observed in individual caspase 3-positive motoneurons.
The aim of the work was to analyse changes in the location and morphological characteristics of calbindin (CB)-immunoreactive (IR) neurons of the thoracic spinal cord of C57BL/6N male mice after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). Space flight induced multidirectional changes of the number and morphological parameters of CB-positive neurons. The number of IR neurons increased in laminae I (from 10 to 17 neurons per section), II (from 42 to 67 cells per section) and IX (from two neurons per segment to two neurons per section), but CB disappeared in neurons of lamina VIII. Weightlessness did not affect the number of CB-IR neurons in laminae III–V and VII, including preganglionic sympathetic neurons. The cross-sectional area of CB-IR neurons decreased in lamina II and VII (group of partition cells) and increased in laminae III–V and IX. After a space flight, few very large neurons with long dendrites appeared in lamina IV. The results obtained give evidence about substantial changes in the calcium buffer system and imbalance of different groups of CB-IR neurons due to reduction of afferent information under microgravity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.