International audienceThis study describes a calorespirometric method for determining the coefficients of the correlation of specific respiration and growth rates. To validate the calorespirometric method, coefficients obtained from calorespirometric data are compared with coefficients obtained from mass and elongation growth rates measured at three temperatures on oat (Avena sativa L.) shoots. Calorespirometric measurements were also made on leaf tissue of varying age from Verbascum thapsus L., Convolvulus arvensis L., and Helianthus tuberosus Nutt. Measurements on A. sativa, C. arvensis and H. tuberosus at several temperatures show maintenance coefficients generally increase with temperature, but, in disagreement with accepted theory, growth coefficients for C. arvensis and A. sativa vary with temperature. A comparison of rates expressed as intensive and extensive quantities showed that the decline in specific respiration and growth rates with age is caused by dilution-by-growth, not down-regulation of respiration rate by reduced demand. The ratio of heat rate to CO2 rate increases with leaf age, and, for fully mature leaves, exceeds the maximum possible value for carbohydrates. This shows that the catabolic substrate may vary with leaf age in immature leaves and cannot be assumed to consist only of carbohydrates in mature leaves. Dilution-by-growth, substrate variation, and inseparability of the variables in the growth-maintenance model all complicate physiological interpretation of the slope and intercept of plots of specific respiration rates v. specific growth rates. Keywords: Avena sativa, calorimetry, Convolvulus arvensis, Helianthus tuberosa, models, respiration, Verbascum thapsus
(1) Background: The amino acid arginine is now receiving great attention due to its potential anti-caries benefits. The purpose of this in vitro study was to evaluate the shear bond strength (SBS), ultimate tensile strength (UTS), and antimicrobial potential (CFU) of two arginine-containing orthodontic resin cements. (2) Methods: Forty bovine incisors were separated into four groups (n = 10): Orthocem, Orthocem + arginine (2.5 wt%), Transbond XT, and Transbond XT + arginine (2.5 wt%). The brackets were fixed to the flat surface of the enamel, and after 24 h the SBS was evaluated using the universal testing machine (Instron). For the UTS test, hourglass samples (n = 10) were made and tested in a mini-testing machine (OM-100, Odeme). For the antibacterial test (colony forming unit-CFU), six cement discs from each group were made and exposed to Streptococcus mutans UA159 biofilm for 7 days. The microbiological experiment was performed by serial and triplicate dilutions. The data from each test were statistically analyzed using a two-way ANOVA, followed by Tukey’s test (α = 0.05). (3) Results: The enamel SBS mean values of Transbond XT were statistically higher than those of Orthocem, both with and without arginine (p = 0.02033). There was no significant difference in the SBS mean values between the orthodontic resin cements, either with or without arginine (p = 0.29869). The UTS of the Transbond XT was statistically higher than the Orthocem, but the addition of arginine at 2.5 wt% did not influence the UTS for either resin cement. The Orthocem + arginine orthodontic resin cement was able to significantly reduce S. mutans growth, but no difference was observed for the Transbond XT (p = 0.03439). (4) Conclusion: The incorporation of arginine to commercial orthodontic resin cements may be an efficient preventive strategy to reduce bacterial growth without compromising their adhesive and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.