Gene and drug delivery systems need crucial update in the issue of nanocarriers. Layered double hydroxides (LDHs) are known as biocompatible inorganic lamellar nanomaterials with versatile properties. In the present study, Zn/Al-LDH nanoparticle was synthesized and characterized by FTIR, XRD, SEM, TEM and Zeta potential tests and then intercalated with valproate and methyldopa by co-precipitation and ion exchange methods. These nanocarriers were applied as high activity nanolayers-based delivery systems. On the other hand, Zn/Al-LDH þ plasmid/gene (pCEP4/Cdk9) evaluated on C2C12 myoblast cells. Cooperation loading indicated high efficiency of sorting and release of drugs. Additionally, the Real-Time PCR and Western blotting results for plasmid-gene (pCEP4/Cdk9) delivery showed that Zn/Al-LDH nanoparticles can be used as an effective carrier in cellular uptake and release of genes for gene therapy. Easy and cost-effective production of Zn/Al-LDH nanoparticles proposed them as potential alternatives for the traditional routs of drug/gene delivery.
A metal-organic framework/periodic mesoporous silica (MOF-5@SBA-15) hybrid material has been prepared by using SBA-15 as a matrix. The prepared MOF-5@SBA-15 hybrid material was then deposited on a stainless-steel wire to obtain the fiber for the solid-phase microextraction of phenolic compounds. Modifications in the metal-organic framework structure have proven to improve the extraction performance of MOF/SBA-15 hybrid materials, compared to pure MOF-5 and SBA-15. Optimum conditions include an extraction temperature of 75°C, a desorption temperature of 260°C, and a salt concentration of 20% w/v. The dynamic linear range and limit of detection range from 0.1-500 and from 0.01-3.12 ng/mL, respectively. The repeatability for one fiber (n = 3), expressed as relative standard deviation, is between 4.3 and 9.6%. The method offers the advantage of being simple to use, rapid, and low cost, the thermal stability of the fiber, and high relative recovery (compared to conventional methods) represent additional attractive features.
Background
Magnetic nanocomposites with a core–shell nanostructure have huge applications in different sciences especially in the release of the drugs, because of their exclusive physical and chemical properties. In this research, magnetic@layered double hydroxide multicore@shell nanostructure was synthesized by the facile experiment and is used as novel drug nanocarrier.
Methods
Magnetic nanospheres were synthesized by a facile one-step solvothermal route, and then, layered double hydroxide nanoflakes were prepared on the magnetic nanospheres by coprecipitation experiment. The synthesized nanostructures were characterized by FTIR, XRD, SEM, VSM, and TEM, respectively. After intercalation with Ibuprofen and Diclofenac as anti-inflammatory drugs and using exchange anion experiment, the basal spacing of synthesized layered double hydroxides was compared with brucite nanosheets from 0.48 nm to 2.62 nm and 2.22 nm, respectively.
Results
The results indicated that Ibuprofen and Diclofenac were successfully intercalated into the interlay space of LDHs via bridging bidentate interaction. In addition, in-vitro drug release experiments in pH 7.4, phosphate-buffered saline (PBS) showed constant release profiles with Ibuprofen and Diclofenac as model drugs with different lipophilicity, water solubility, size, and steric effect.
Conclusion
The Fe3O4@LDH-ibuprofen and Fe3O4@LDH-diclofenac had the advantage of the strong interaction between the carboxyl groups with higher trivalent cations by bridging bidentate, clarity, and high thermal stability. It is confirmed that Fe3O4@LDH multicore-shell nanostructure may have potential application for constant drug delivery.
In this research, a carbon nanotube/layered double hydroxide nanocomposite was synthesized by an in situ growth route by electrostatic force. The prepared carbon nanotube/layered double hydroxide nanocomposite was successfully prepared and deposited on a stainless-steel wire for the fabrication of the solid-phase microextraction fiber. The fiber was evaluated for the extraction of phenolic compounds from water samples. Analytical merits of the method, under optimum conditions (extraction temperature: 75°C, extraction time: 30 min, desorption time: 2 min, desorption temperature 260°C, salt concentration: 10% w/v) are 0.01-300 ng/mL for the linear dynamic range and 0.005-0.08 for the limit of detection. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation, was between 6.5 and 9.9% for the phenolic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.