It has recently been recognized that thyroid hormones may rapidly generate biological responses by non-genomic mechanisms that are unaffected by inhibitors of transcription and translation. The signal transduction pathways underlying these effects are just beginning to be defined. We demonstrated that thyroid hormone T 3 rapidly induces Akt activation in pancreatic b cells rRINm5F and hCM via thyroid hormone receptor (TR) b1. The phosphorylation of Akt was T 3 specific and dependent. Coimmunoprecipitation and colocalization experiments revealed that the phosphatidylinositol 3 kinase (PI3K) p85a subunit and the thyroid receptor b1 were able to form a complex at the cytoplasmic level in both the cell lines, suggesting that a 'cytoplasmic TRb1' was implicated. Moreover, we evidenced that T 3 treatment was able to induce kinase activity of the TRb1-associated PI3K. The silencing of TRb1 expression through RNAi confirmed this receptor to be crucial for the T 3 -induced activation of Akt. This action involved a T 3 -induced nuclear translocation of activated Akt, as demonstrated by confocal immunofluorescence. In summary, T 3 is able to specifically activate Akt in the islet b cells rRINm5F and hCM through the interaction between TRb1 and PI3K p85a, demonstrating the involvement of TRb1 in this novel T 3 non-genomic action in islet b cells.
Some lines of evidence suggest that tumors, including ependymoma, might arise from a subpopulation of cells, termed cancer stem cells (CSCs), with self-renewal and tumor-initiation properties. Given the strict dependence of CSCs on epidermal growth factor (EGF) through EGF receptor (EGFR), we investigated the effects of EGFR inhibitors in ependymoma-stem cells (SCs) in vitro and in orthotopic mouse models. We established two ependymoma-SC lines from two recurrent pediatric ependymoma. Both lines expressed markers of radial glia-the candidate SCs of ependymoma-and showed renewal ability, multipotency, and tumorigenicity after orthotopic implantation, despite markedly different expression of CD133 (94 vs. 6%). High phosphorylated-EGFR/EGFR ratio was detected, which decreased after differentiation. EGFR inhibitors (gefitinib and AEE788) reduced clonogenicity, proliferation and survival of ependymoma-SC lines dose-dependently, and blocked EGF-induced activation of EGFR, Akt and extracellular signal-regulated kinase 1/2. Overall, AEE788 was more effective than gefitinib. EGFR blockade as well as differentiation strongly reduced CD133 expression. However, ex vivo treatment with AEE788 did not impair orthotopic tumor engraftment, whereas ex vivo differentiation did, suggesting that CD133 does not absolutely segregate for tumorigenicity in ependymoma-SCs. Orally administered AEE788 prolonged survival of mice bearing ependymoma-SC-driven orthotopic xenografts from 56 to 63 days, close to statistical significance (log-rank p 5 0.06). Our study describes for the first time EGFR signaling in ependymoma-SCs and the effects of EGFR blockade in complementary in vitro and in vivo systems. The experimental models we developed can be used to further investigate the activity of EGFR inhibitors or other antineoplastic agents in this tumor.
Thyroid hormone action, widely recognized on cell proliferation and metabolism, has recently been related to the phosphoinositide 3 kinase (PI3K), an upstream regulator of the Akt kinase and the involvement of the thyroid hormone receptor beta1 has been hypothesized. The serine-threonine kinase Akt can regulate various substrates that drive cell mass proliferation and survival. Its action has also been characterized in pancreatic beta-cells. We previously demonstrated that Akt activity and its activation in the insulinoma cell line hCM could be considered a specific target of the non-genomic action of T3. In this study we analyzed the molecular pathways involved in the regulation of cell proliferation, survival, size, and protein synthesis by T3 in a stable TRbeta1 interfered insulinoma cell line, derived from the hCM, and evidenced a strong regulation of both physiological and molecular events by T3 mediated by the thyroid hormone receptor beta1. We showed that the thyroid receptor beta1 mediates the T3 regulation of the cdk4.cyc D1.p21(CIP1).p27(KIP1) complex formation and activity. In addition TRbeta1 is essential for the T3 upregulation of the Akt targets beta-catenin, p70S6K, and for the phosphorylation of Bad and mTOR. We demonstrated that the beta1 receptor mediates the T3 upregulation of protein synthesis and cell size, together with the cell proliferation and survival, playing a crucial role in the T3 regulation of the PI3K/Akt pathway.
Numerous evidences indicate that thyroid hormones exert an important role in the regulation of the reproductive system in the adult female. Although a clear demonstration of the thyroid-ovarian interaction is still lacking, it is conceivable that thyroid hormones might have a direct role in ovarian physiology via receptors in granulosa cells. In this study we analyzed if thyroid hormone treatment could affect cell proliferation and survival of COV434 cells. To this aim cell growth experiments and cell cycle analyses by flow cytometry were performed. Secondly the T(3) survival action was tested by TUNEL assay and MD30 cleavage analysis. We showed that T(3), and not T(4), can protect ovarian granulosa cells COV434 from apoptosis, regulating cell cycle and growth in the same cells. The increase in cell growth resulted in an augmented percentage of the cells in the S phase and, in a reduction of the doubling time (18%). Subsequently apoptotic pathway induced by serum deprivation has been evaluated in the cells exposed or not to thyroid hormone treatment. The T(3) treatment was able to remarkably counteract the apoptotic process. Even at the ultrastructural level there was an evident protective effect of T(3) in the cells that, besides the maintenance of the original morphology and, the absence of basophilic cytoplasm, conserved normal junctional areas. Furthermore, the protective T(3) effect evaluated by FACS analysis in the presence of a PI3K inhibitor revealed, as also confirmed by Western Blot on pAkt, that the PI3K pathway is crucial in T(3) survival action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.