To unleash the full potential of white organic light-emitting diodes (OLEDs) as large-area light sources, guided optical modes have to be efficiently outcoupled, which calls for internal extraction layers (IELs) that can be easily integrated into a scalable manufacturing process. To realize such IELs, we developed a high refractive index scattering polymer:TiO2-nanoparticle mixture that can be deposited onto a large area by using the cost-effective screen-printing method. We exploited this approach to produce a 10 μm thick IEL covering the exact area of active pixels distributed over a 15 × 15 cm2 glass substrate. By optimizing the initial mixture composition, we achieved screen-printing-compatible rheological properties as well as tailored light scattering and transmission over the visible spectrum. The spatial homogeneity of those optical properties was obtained by additional substrate treatments to improve the wetting behavior and to allow reflow after printing. The devices were finalized by depositing a high-efficiency white OLED stack atop the IEL. We demonstrated a luminous efficacy increase up to 56% due to the scattering layer. The IEL also ensured a Lambertian emission profile without any angular color shift.
Nickel oxide (NiO) is a widely used material for efficient hole extraction in optoelectronic devices. However, its surface characteristics strongly depend on the processing history and exposure to adsorbates. To achieve controllability of the electronic and chemical properties of solution-processed nickel oxide (sNiO), we functionalize its surface with a self-assembled monolayer (SAM) of 4-cyanophenylphosphonic acid. A detailed analysis of infrared and photoelectron spectroscopy shows the chemisorption of the molecules with a nominal layer thickness of around one monolayer and gives an insight into the chemical composition of the SAM. Density functional theory calculations reveal the possible binding configurations. By the application of the SAM, we increase the sNiO work function by up to 0.8 eV. When incorporated in organic solar cells, the increase in work function and improved energy level alignment to the donor does not lead to a higher fill factor of these cells. Instead, we observe the formation of a transport barrier, which can be reduced by increasing the conductivity of the sNiO through doping with copper oxide. We conclude that the widespread assumption of maximizing the fill factor by only matching the work function of the oxide charge extraction layer with the energy levels in the active material is a too narrow approach. Successful implementation of interface modifiers is only possible with a sufficiently high charge carrier concentration in the oxide interlayer to support efficient charge transfer across the interface.
Conformationally rigid multipodal molecules should control the orientation and packing density of functional head groups upon self-assembly on solid supports. Common tripods frequently fail in this regard, because of inhomogeneous bonding configuration and stochastic orientation. These issues are circumvented by a suitable tetrapodal diazatriptycene moiety, bearing four thiol-anchoring groups, as demonstrated in the present study. Such molecules form well defined self-assembled monolayers (SAMs) on Au(111) substrates, whereby the tetrapodal scaffold enforces a nearly upright orientation of the terminal head group with respect to the substrate even in case of 75% covalent attachment to the surface. Functionalization by condensation chemistry allows a large variety of functional head groups to be introduced to the tetrapod, paving the path towards advanced surface engineering and sensor fabrication.
Studying the structure-property relations of tailored dipolar phenyl and biphenylphosphonic acids, we report self-assembled monolayers with a significant decrease in the work function (WF) of indium-tin oxide (ITO) electrodes. Whereas the strengths of the dipoles are varied through the different molecular lengths and the introduction of electron-withdrawing fluorine atoms, the surface energy is kept constant through the electron-donating N, N-dimethylamine head groups. The self-assembled monolayer formation and its modification of the electrodes are investigated via infrared reflection absorption spectroscopy, contact angle measurements, and photoelectron spectroscopy. The WF decrease in ITO correlates with increasing molecular dipoles. The lowest ever recorded WF of 3.7 eV is achieved with the fluorinated biphenylphosphonic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.