In patients with non-alcoholic fatty liver disease (NAFLD), insulin resistance (IR) associates with fibrosis progression independent of the hepatic inflammation, but the mechanisms are still unclear. We modeled the independent contribution of inflammation (non-alcoholic steatohepatitis: NASH) by exploiting the methionine-choline deficient (MCD) diet, and that of IR by insulin receptor (InsR) haploinsufficient mice (InsR+/-), in the pathogenesis of liver fibrosis in C57BL/6mice.We confirmed the study findings in 96 patients with NAFLD. InsR+/- enhanced hepatic fat content and impaired hepatic insulin signaling leading to Forkhead box protein O1 (FoxO1) accumulation inMCD-fed mice. Remarkably, despite reduced inflammation and hampered transdifferentiation of hepatic stellate cells (HSCs), InsR+/- promoted hepatic fibrosis accumulation, which correlated with the induction of the Lysyl Oxidase Like 2 (Loxl2), involved in matrix stabilization. Loxl2 up-regulation was not a cell autonomous property of insulin resistant HSCs, but was dependent on microparticles (MPs) released specifically by insulin resistant hepatocytes (HEPs) exposed to fatty acids. The mechanism entailed FoxO1 up-regulation, as FoxO1 silencing normalized Loxl2 expression reversing fibrosis in InsR+/- MCD-fed mice. Loxl2 up-regulation was similarly detected during IR induced by obesity, but not by lipogenic stimuli (fructose feeding). Most importantly, LOXL2 up-regulation was observed in NAFLD patients with type 2 diabetes (T2D) and LOXL2 hepatic and circulating levels correlated with histological fibrosis progression. IR favors fibrosis deposition independent of the classic 'inflammation - HSC transdifferentiation' pathway. The mechanism entails a cross-talk between enhanced lipotoxicity in insulin resistant HEPs and Loxl2 production by HSCs, which was confirmed in patients with diabetes, thereby facilitating extracellular matrix (ECM) stabilization
Circulating endothelial cells (CEC) and their progenitors (EPC) are restricted subpopulations of peripheral blood (PB), cord blood (CB), and bone marrow (BM) cells, involved in the endothelial homeostasis maintenance. Both CEC and EPC are thought to represent potential biomarkers in several clinical conditions involving endothelial turnover/remodeling. Although different flow cytometry methods for CEC and EPC characterization have been published so far, none of them have reached consistent conclusions, therefore consensus guidelines with respect to CEC and EPC identification and quantification need to be established. Here, we have carried out an in depth investigation of CEC and EPC phenotypes in healthy PB, CB and BM samples, by optimizing a reliable polychromatic flow cytometry (PFC) panel. Results showed that the brightness of CD34 expression on healthy PB and CB circulating cells represents a key benchmark for the identification of CEC (CD45neg/CD34bright/CD146pos) respect to the hematopoietic stem cell (HSC) compartment (CD45dim/CD34pos/CD146neg). This approach, combined with a dual-platform counting technique, allowed a sharp CEC enumeration in healthy PB (n 5 38), and resulting in consistent CEC counts with previously reported data (median 5 11.7 cells/ml). In parallel, by using rigorous PFC conditions, CD34pos/CD45dim/CD133pos/VEGFR2pos EPC were not found in any healthy PB or CB sample, since VEGFR2 expression was never detectable on the surface of CD34pos/CD45dim/CD133pos cells. Notably, the putative EPC phenotype was observed in all analyzed BM samples (n 5 12), and the expression of CD146 and VEGFR2, on BM cells, was not restricted to the CD34bright compartment, but also appeared on the HSC surface. Altogether, our findings suggest that the previously reported EPC antigen profile, defined by the simultaneous expression of VEGFR2 and CD133 on the surface of CD45dim/CD34pos cells, should be carefully re-evaluated and further studies should be conducted to redefine EPC features in order to translate CEC and EPC characterization into clinical practice. V C 2015 International Society for Advancement of Cytometry
BackgroundCirculating tumor cells (CTCs) represent one of the most interesting target in improving diagnosis, prognosis and treatment. Herein we evaluate the possibility of using an emo-cytometric approach on the evaluation of the heterogeneous population of CTCs to improve personalized metastatic risk assessment. We benchmarked ex vivo behavior of distinct subsets of circulating colon tumor cells with correspondent clinical behavior of patients from which we isolated CTCs.MethodsIsolation and CTC expansion were performed by a gradient protocol. In vitro characterization was determined by flow cytometry, immunofluorescence, western blotting and proteomic profiling. Cell sorter was performed with immunomagnetic beads. Confocal microscopy was used to evaluate tissue sections. Kaplan Mayer curves was cared for through Medcalc program.ResultsWe collected heterogeneous CTCs, derived from the whole blood of seven patients affected by colon cancer, expressing CD133posCD45neg (5 ± 1) and (2 ± 1) and CK20posCD45neg of (29 ± 3) (11 ± 1) cells/ml in Dukes D and A stage respectively. Proliferation rate of 57 ± 16 %, expression for CXCR4pos of 18 ± 7 % and detectable levels of IL-6, IL-8 and SDF-1 cytokines in conditioned culture medium characterized short-time expanded–CTCs (eCTCs). ECTCs organized in tumor sphere were CD45negCD133pos while in adhesion were CXCR4posCK20pos. These two subsets were separately injected in mice. The first group of xenografts developed superficial lesions within 2 weeks. In the second group, in absence of growing tumour, the survival of injected eCTCs was monitored through SDF-1 serum levels detection. The detection of human cancer cells expressing CK20, in mice tissues sections, suggested a different biological behaviour of injected eCTC-subsets: tumorigenic for the first and disseminating for the second. The benchmarking of the experimental data with the clinical course highlights that patients with prevalence of circulating cancer stem cells (CD45negCD133pos) have a lower overall survival. Conversely, patients with prevalence of circulating differentiated cells (CXCR4posCK20pos) have a low disease-free survival.ConclusionOn the basis of the heterogeneous composition and despite the low number of CTCs, it was possible to distinguish two subgroups of CTCs, suggesting a different clinical outcome. CTC-subsets detailing is useful to better define the metastatic–risk personalized score thus improving disease management and reducing patient care cost.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-016-0876-y) contains supplementary material, which is available to authorized users.
Circulating endothelial cells (CEC) represent a restricted peripheral blood (PB) cell subpopulation with high potential diagnostic value in many endothelium-involving diseases. However, whereas the interest in CEC studies has grown, the standardization level of their detection has not. Here, we undertook the task to align CEC phenotypes and counts, by standardizing a novel flow cytometry approach, within a network of six laboratories. CEC were identified as alive/nucleated/CD45negative/CD34bright/CD146positive events and enumerated in 269 healthy PB samples. Standardization was demonstrated by the achievement of low inter-laboratory Coefficients of Variation (CVL), calculated on the basis of Median Fluorescence Intensity values of the most stable antigens that allowed CEC identification and count (CVL of CD34bright on CEC ~ 30%; CVL of CD45 on Lymphocytes ~ 20%). By aggregating data acquired from all sites, CEC numbers in the healthy population were captured (medianfemale = 9.31 CEC/mL; medianmale = 11.55 CEC/mL). CEC count biological variability and method specificity were finally assessed. Results, obtained on a large population of donors, demonstrate that the established procedure might be adopted as standardized method for CEC analysis in clinical and in research settings, providing a CEC physiological baseline range, useful as starting point for their clinical monitoring in endothelial dysfunctions.
Secretome of primary cultures is an accessible source of biological markers compared to more complex and less decipherable mixtures such as serum or plasma. The protonation state (PS) of secretome reflects the metabolism of cells and can be used for cancer early detection. Here, we demonstrate a superhydrophobic organic electrochemical device that measures PS in a drop of secretome derived from liquid biopsies. Using data from the sensor and principal component analysis (PCA), we developed algorithms able to efficiently discriminate tumour patients from non-tumour patients. We then validated the results using mass spectrometry and biochemical analysis of samples. For the 36 patients across three independent cohorts, the method identified tumour patients with high sensitivity and identification as high as 100% (no false positives) with declared subjects at-risk, for sporadic cancer onset, by intermediate values of PS. This assay could impact on cancer risk management, individual’s diagnosis and/or help clarify risk in healthy populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.