Phosphatidylinositol 3-kinase (PI3K) is a key player in cell-growth signaling in a number of lymphoid malignancies, but its role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated. Therefore, we investigated the role of the PI3K/AKT pathway in a panel of 5 DLBCL cell lines and 100 clinical samples. Inhibition of PI3K by a specific inhibitor, LY294002, induced apoptosis in SUDHL4, SUDHL5, and SUDHL10 (LY-sensitive) cells, whereas SUDHL8 and OCI-LY19 (LYresistant) cells were refractory to LY294002-induced apoptosis. AKT was phosphorylated in 5 of 5 DLBCL cell lines and inhibition of PI3K caused dephosphorylation/inactivation of constitutively active AKT, FOXO transcription factor, and GSK3 in LY-sensitive cell lines. In addition, there was a decrease in the expression level of inhibitory apoptotic protein, XIAP, in the DLBCL cell lines sensitive to LY294002 after treatment. However, no effect was observed in XIAP protein levels in the resistant DLBCL cell lines following LY294002 treatment. Finally, using immunohistochemistry, p-AKT was detected in 52% of DLBCL tumors tested. Furthermore, in univariate analysis, high p-AKT expression was associated with short survival. In multivariate analysis, this correlation was no longer significant. Altogether, these results suggest that the PI3K/AKT pathway may be a potential target for therapeutic intervention in DLBCL. IntroductionB-cell lymphoma represents the malignant counterpart of normal B cells arrested at specific maturational stages. Diffuse large B-cell lymphoma (DLBCL) is considered to be the most common type of lymphoma in adults, accounting for 30% to 40% of cases of non-Hodgkin lymphoma. 1 Although patients with DLBCLs are potentially curable with combination chemotherapy, the disease proves fatal in approximately 50% of patients. 2 The cause of most DLBCLs remains unknown; however, dysregulation of apoptosis or defective repair plays a role in lymphogenesis. 3 A number of constitutively activated growth signaling pathways have frequently been observed in DLBCL including protein kinase AKT and nuclear factor B (NF-B) transcription factor. [4][5][6] Protein kinases have been implicated as having crucial roles in regulating cell growth, metabolic responses, cell proliferation, migration, and apoptosis, which altogether contribute to tumorigenesis. Constitutive activation of these protein kinases, mainly by phosphorylation, has been implicated as contributing to malignant phenotypes in a number of human cancers. [7][8][9] AKT is a serine threonine kinase that gets activated on growth factor and cytokine stimulation. When phosphoinositide-3,4,5-triphosphate (PIP 3 ) is generated by phosphatidylinositol 3Ј-kinase (PI3K) in response to an intracellular signal, it binds to the PH domain of AKT and translocates to the plasma membrane resulting in the activation of phosphoinositidedependent protein kinases (PDK1 and PDK2). Activated PDK1 and PDK2 phosphorylate at the Thr308 and Ser473 residues of the AKT kinase domain, resulting in its activation. ...
BackgroundExpression profile of the toll like receptors (TLRs) on PBMCs is central to the regulation of proinflammatory markers. An imbalance in the TLRs expression may lead to several types of inflammatory disorders. Furthermore, the dynamic regulation of inflammatory activity and associated impaired production of cytokines by peripheral blood mononuclear cells (PBMCs) in obese individulas remain poorly understood. Therefore, we determined the perturbation in TLRs (TLR2 and TLR4), their adaptor proteins (MyD88, IRAK1 and TRAF6) expression in PBMCs/subcutaneous adipose tissue (AT) as well as inflammatory cytokines changes in obese individuals.MethodsmRNA expression levels of TLR2, TLR4, IL-6, TNF-α and adaptor proteins were determined by RT-PCR. TLR2, TLR4 and adaptor proteins expression in AT was determined by immunohistochemistry.ResultsObese and overweight individuals showed significantly increased expression of TLR2, TLR4 and MyD88 in both PBMCs and AT as compared with lean individuals (P < 0.05). Interestingly, we found a remarkably higher expression of TLRs in obese and overweight individuals with type 2 diabetes (P < 0.05). Increased expression of TLR2, TLR4, MyD88 and IRAK1 correlated with body mass index (BMI) (TLR2: r = 0.91; TLR4: r = 0.88, P <0.0001; MyD88: r = 0.95, P < 0.0001; IRAK1 r = 0.78, P < 0.002). TLRs’ expression was also correlated with fasting blood glucose (FBG) (TLR2: r = 0.61, P < 0.002; TLR4: r = 0.52, P < 0.01) and glycated haemoglobin (HbA1c) ( TLR2: r = 0.44, P <0.03; TLR4: r = 0.48, P < 0.03). Transcript levels of IL-6 and TNF-α were highly elevated in obese subjects compared to lean subjects. There was a strong association of TLRs’ expression in PBMCs with TNF-α (TLR2: r = 0.92; TLR4: r = 0.92; P < 0.0001) and IL-6 (TLR2: r = 0.91, P < 0.0001; TLR4: r = 0.81; P < 0.001). Similarly adaptor proteins were significantly correlated with TNF-α (MyD88: r = 0.9, P < 0.0001; IRAK1: r = 0.86; P < 0.0002) and IL-6 (MyD88: r = 0.91, P < 0.0001; IRAK1: 0.77; P < 0.002).ConclusionsTLRs and adapter proteins were overexpressed in PBMCs from obese subjects, which correlated with increased expression of TNF-α and IL-6. This association may explain a potential pathophysiological link between obesity and inflammation leading to insulin resistance.
Aim: The fragile histidine triad (FHIT) gene was discovered and proposed as a tumor suppressor gene for most human cancers. It encodes the most active common human chromosomal fragile region, FRA3B. We studied the prevalence of loss of FHIT expression in various tumors and correlated its loss with various clinicopathologic features. Methods: To determine whether the absence of FHIT expression correlates with clinical variables such as grade, stage, and survival time, we assessed FHIT expression using immunohistochemistry. More than 1,800 tumors from more than 75 tumor categories were analyzed by immunohistochemistry in a tissue microarray format.
BackgroundThe innate immune Toll-like receptors (TLRs) 2/4 are important players in chronic low-grade inflammation called metabolic inflammation in obesity and type-2 diabetes (T2D). While TLR2/4 expression changes associated with metabolic inflammation are known, the adipose tissue expression of endocytic TLR8, which is expressed by all major macrophage subsets, remain unclear. We, therefore, determined the TLR8 mRNA/protein expression in the adipose tissue samples from lean, overweight, and obese individuals with or without T2D.MethodsSubcutaneous fat biopsy samples were collected from 49 non-diabetic (23 obese, 17 overweight, and nine lean) and 45 T2D (32 obese, ten overweight, and three lean) individuals. TLR8 gene expression was determined using real-time RT-PCR and TLR8 protein expression was assessed by both immunohistochemistry and confocal microscopy. The changes in TLR8 expression were compared with those of macrophage markers, proinflammatory cytokines/chemokines, and surface TLRs/adapter proteins. The data were analyzed using t-test/Mann-Whitney U-test, Pearson’s correlation, and multiple regression test.ResultsThe data show that in obese non-diabetic/T2D individuals, TLR8 gene expression was significantly upregulated as compared with lean individuals which correlated with body mass index (BMI) and body fat percentage in non-diabetic population (P < 0.05). As expected, TLR8 adipose tissue protein expression in non-diabetic/T2D obese individuals was also higher than that of overweight/lean counterparts. In non-diabetic/T2D individuals, TLR8 gene expression associated (P < 0.05) with the expression of CD68, CD11c, CD86, and CD163 macrophage markers. Also, in these individuals, TLR8 gene expression correlated positively (P < 0.05) with adipose tissue expression of TNF-α, IL-18, and IL-8 as well as with systemic CRP levels (in non-diabetics). TLR8 expression was also associated with TLR4/TLR2 and MyD88 expression in the adipose tissue.ConclusionsThe elevated adipose tissue expression of TLR8 in obesity/T2D has consensus with inflammatory signatures and may thus represent an immune marker of metabolic inflammation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12950-016-0147-y) contains supplementary material, which is available to authorized users.
BackgroundWharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells.MethodsWJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch.ResultsWe obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage.ConclusionsIn this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0426-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.