No abstract
Eliminating the sources of human lead exposure is an ongoing public health goal. Identifying the make-up of household plumbing and service line material type is important for many reasons including understanding lead release sources and mechanisms, targeting locations for lead service line (LSL) removal, and assessing the effectiveness of lead remediation strategies. As part of the response to Flint, Michigan's drinking water lead public health crisis, a return to their original drinking water source (Lake Huron) andan increase in orthophosphate dose was implemented in late 2015. In 2016, EPA performed multiple rounds of sequential or "profiling" water sampling to evaluate corrosion control effectiveness and identify lead sources in homes and service lines, as well as to evaluate the effectiveness of corrosion control treatment with time on the different plumbing components. The results showed that lead levels, including high lead levels likely associated with particles, decreased with time in homes sampled during the 11-month evaluation period. Although sequential sampling indicated that brass fittings, brass fixtures, and galvanized pipes were lead sources, LSLs were the greatest source of lead when present. Following the removal of LSLs, the total mass of lead contributed to the drinking water decreased by 86% on average.
A field study was conducted to test the effectiveness of faucet-mounted point of use (POU) water filters for removing high concentrations of lead in drinking water from premise plumbing sources and lead service lines (LSL). These filters were concurrently certified for total lead removal under NSF/ANSI Standard 53 (NSF/ANSI-53) and for fine particulate (Class I) reduction under NSF/ANSI Standard 42 (NSF/ANSI-42). In 2016, filtered and unfiltered drinking water samples were collected at over 345 locations in Flint, Michigan. Over 97% of filtered water samples contained lead below 0.5 mg/L. The maximum lead concentration in filtered water was 2.9 mg/L, well below the bottled water standard. The effectiveness of the POU activated carbon block filters in reducing lead concentrations, even above the 150 mg/L NSF/ANSI-53 challenge standard, is likely related to trapping particles due to the small effective pore size of the filters, in addition to ion-exchange or sorption removal of soluble lead. Properly installed and maintained POU filters, certified under both NSF/ ANSI-53 (for total lead) and NSF/ANSI-42 (for fine particulate), can protect all populations, including pregnant women and children, by reducing lead in drinking water to levels that would not result in a significant increase in overall lead exposure.
Lead service lines (LSLs) represent the greatest source of lead in drinking water. Identifying the locations of LSLs can be challenging, and recent service line (SL) material surveys in Michigan, Illinois, Wisconsin, and Indiana found that on average the materials making up 16% of SLs in these states are unknown and may be lead. Given the large number of possible LSLs in the United States, new and pending regulatory requirements, LSL replacement costs, associated lead exposure risks, and the public's desire to reduce lead exposure, there is a need to rapidly and cost‐effectively identify where LSLs are located, on public and private property. This review summarizes current industry LSL identification methods, including records screening, basic visual examination of indoor plumbing, water sampling, excavation, and predictive data analyses. A qualitative comparison of method cost, accuracy, disturbance, and other impacts is provided as a starting point for utilities that are developing a feasible approach for their specific needs/constraints. Lastly, an example stepwise approach to identify unknown SL materials is proposed. Article Impact Statement This manuscript provides water systems with a review of techniques available to identify LSLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.