Purpose:Regional inductive moderate hyperthermia in combination with chemotherapy can improve the therapeutic efficacy in patients with breast cancer with multiple liver metastases.Methods:The study included 103 patients with breast cancer with multiple liver metastases: 53 patients (main group) who received a combined chemotherapy (TC drug combination) and regional inductive moderate hyperthermia treatment and 50 patients (control group) who received chemotherapy (TC drug combination) alone. Regional inductive moderate hyperthermia exploited electromagnetic fields with an operating frequency of 27.17 ± 0.16 MHz and output power of 75 W. Treatment results were assessed by computed tomography and ultrasound imaging.Results:Partial regression was defined as a 30% decrease in the sum of the maximum diameters of investigated tumors. In the current study, partial regression was described in 8 (15.1%) patients assigned to the main group and 2 (4%) patients in the control (P < .05). The process stabilization was reported in 32 (60.4%) patients receiving the combined treatment and 19 (38%) in the control (P < .05). Equally important, tumor progression was observed in 13 (24.5%) patients representing the main group and 29 (58%) in the control. During a 30-minute treatment session, a temperature increase overlaying greater than 90% of the liver projection exposed to electromagnetic irradiation was not exceeding 40°C.Conclusion:The combined regional inductive moderate hyperthermia and chemotherapy treatment increased the overall therapeutic efficacy by 33.9% (χ2 = 12.182; P < .01).
With the continuous development of drug screening technology, new screening methodologies and technologies are constantly emerging, driving drug screening into rapid, efficient and high-throughput development. Microfluidics is a rising star in the development of innovative approaches in drug discovery. In this article, we summarize the recent years' progress of microfluidic chip technology in drug screening, including the developmental history, structural design, and applications in different aspects of microfluidic chips on drug screening. Herein, the existing microfluidic chip screening platforms are summarized from four aspects: chip structure design, sample injection and drive system, cell culture technology on a chip, and efficient remote detection technology. Furthermore, this review discusses the application and developmental prospects of using microfluidic chips in drug screening, particularly in screening natural product anticancer drugs based on chemical properties, pharmacological effects, and drug cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.