The unique tumor microenvironment (TME) characteristics such as immunosuppression impeded traditional cancer treatments. In contrast, developing cascade catalytic nanoplatforms by fully making use of substances in TME for cancer therapy may deserve full credit. Herein, a cascade catalytic nanoplatform based on glucose oxidase (GOD) modified mesoporous iron oxide nanoparticles (IONP) loaded with Artemisinin (ART) is developed, which is designed as IONP-GOD@ART. GOD can catalyze the oxidization of glucose into gluconic acid and H 2 O 2 , which not only realizes tumor starvation therapy, but also provides H 2 O 2 for IONP mediated Fenton reaction. Simultaneously, mesoporous IONP releases Fe 2+ and Fe 3+ ions in acidic TME. On the one hand, iron ions undergo Fenton reaction to generate hydroxyl radicals for chemodynamic therapy. On the other hand, the endoperoxide bridge in ART is broken in presence of Fe 2+ and further generates reactive oxygen species (ROS) to achieve therapeutic purpose. In this sense, IONP-GOD@ART manipulates TME characteristics and leads to "butterfly effect", which brings out a large amount of ROS for eliciting immunogenic cell death, inducing M1-TAMs polarization, and further reprogramming immunosuppressive TME for enhanced immunotherapy. By this delicate design, the cascade catalytic nanoplatform of IONP-GOD@ART realizes potent cancer immunotherapy for tumor regression and metastasis prevention.