Bayesian theories of neural coding propose that sensory uncertainty is represented by a probability distribution encoded in neural population activity, but direct neural evidence supporting this hypothesis is currently lacking. Using fMRI in combination with a generative model-based analysis, we found that probability distributions reflecting sensory uncertainty could reliably be estimated from human visual cortex and, moreover, that observers appeared to use knowledge of this uncertainty in their perceptual decisions.
How does the brain represent the reliability of its sensory evidence? Here, we test whether sensory uncertainty is encoded in cortical population activity as the width of a probability distribution, a hypothesis that lies at the heart of Bayesian models of neural coding. We probe the neural representation of uncertainty by capitalizing on a well-known behavioral bias called serial dependence. Human observers of either sex reported the orientation of stimuli presented in sequence, while activity in visual cortex was measured with fMRI. We decoded probability distributions from population-level activity and found that serial dependence effects in behavior are consistent with a statistically advantageous sensory integration strategy, in which uncertain sensory information is given less weight. More fundamentally, our results suggest that probability distributions decoded from human visual cortex reflect the sensory uncertainty that observers rely on in their decisions, providing critical evidence for Bayesian theories of perception.
Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.
What gives rise to the human sense of confidence? Here, we tested the Bayesian hypothesis that confidence is based on a probability distribution represented in neural population activity. We implemented several computational models of confidence, and tested their predictions using psychophysics and fMRI. Using a generative model-based fMRI decoding approach, we extracted probability distributions from neural population activity in human visual cortex. We found that subjective confidence tracks the shape of the decoded distribution. That is, when sensory evidence was more precise, as indicated by the decoded distribution, observers reported higher levels of confidence. We furthermore found that neural activity in the insula, anterior cingulate, and prefrontal cortex was linked to both the shape of the decoded distribution and reported confidence, in ways consistent with the Bayesian model. Altogether, our findings support recent statistical theories of confidence and suggest that probabilistic information guides the computation of one’s sense of confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.