Visual working memory is often modeled as having a fixed number of slots. We test this model by assessing the receiver operating characteristics (ROC) of participants in a visual-working-memory change-detection task. ROC plots yielded straight lines with a slope of 1.0, a tell-tale characteristic of all-or-none mnemonic representations. Formal model assessment yielded evidence highly consistent with a discrete fixed-capacity model of working memory for this task.working memory ͉ capacity ͉ mathematical models of memory ͉ short-term memory T he study of the nature and capacity of visual working memory (WM) is both timely (1) and controversial (2, 3). A popular conceptualization is that visual WM consists of a fixed number of discrete slots in which items or chunks are temporarily held (2, 4, 5). Nonetheless, there are dissenting viewpoints in which the discreteness is taken as, at most, a convenient oversimplification (6, 7). In this article, we provide a rigorous test of the fixed-capacity model for a visual WM task. Herein, we apply this test to items that differ in color, although the test is suitable to examine the generality of capacity limits across various materials.We used a common version (8-15) of the task popularized by Luck and Vogel (4, 16) (see Fig. 1A). At study, participants are presented with an array of colored squares. At test, a single square is presented; this square is either the same color as the corresponding square in the study array (a "same trial") or a novel color (a "change trial"). Participants simply decide whether the test square is the same as or different from the corresponding studied square. In this task, where the color of each square is unique and the colors are well separated, capacity is the number of squares (objects) that may be held in visual WM. This object-based view of capacity is supported by previous research (4), in which performance does not vary with the number of manipulated features per object.Previous demonstrations of fixed capacity have relied on plotting capacity estimates as a function of the number of to-be-remembered items. Fixed capacity is claimed because capacity estimates tend to asymptote at three to four items for array sizes of four to six items. This approach, however, is not the most rigorous for this model. There are three weaknesses in previous demonstrations: (i) The asymptote of the capacity estimated may be mimicked by models without recourse to fixed capacity; (ii) previous demonstrations are made with aggregate data, and an asymptote in the group aggregate does not necessarily imply asymptotes in all or any individuals; and (iii) the stability of these asymptotes has not been formally assessed. These weaknesses motivate a more constrained test, to be presented subsequently.The Fixed-Capacity Almost-Ideal Observer Model. We define the fixed-capacity ideal observer as one who maximizes the probability of a correct response given the constraint that visual WM is discrete and limited in the number of items that may be held. Here, we derive th...
Bayesian theories of neural coding propose that sensory uncertainty is represented by a probability distribution encoded in neural population activity, but direct neural evidence supporting this hypothesis is currently lacking. Using fMRI in combination with a generative model-based analysis, we found that probability distributions reflecting sensory uncertainty could reliably be estimated from human visual cortex and, moreover, that observers appeared to use knowledge of this uncertainty in their perceptual decisions.
Considerable information about mental states can be decoded from noninvasive measures of human brain activity. Analyses of brain activity patterns can reveal what a person is seeing, perceiving, attending to, or remembering. Moreover, multidimensional models can be used to investigate how the brain encodes complex visual scenes or abstract semantic information. Such feats of "brain reading" or "mind reading," though impressive, raise important conceptual, methodological, and ethical issues. What does successful decoding reveal about the cognitive functions performed by a brain region? How should brain signals be spatially selected and mathematically combined to ensure that decoding reflects inherent computations of the brain rather than those performed by the decoder? We highlight recent advances and describe how multivoxel pattern analysis can provide a window into mind-brain relationships with unprecedented specificity, when carefully applied. However, as brain-reading technology advances, issues of neuroethics and mental privacy will be important to consider.
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.