The dynamics of bistability in deformed helix ferroelectric liquid crystal have been investigated by electro-optical method. The threshold value of the voltage required to switch the molecules of deformed helix ferroelectric liquid crystals (DHFLC) material has been studied by applying triangular wave pulse and texture observation under polarizing microscope. Two peaks have been observed in low and high frequency regimes on the application of triangular wave pulse to the sample. It has been proposed that the first peak is due to helix unwinding-winding process and the second is due to molecular reorientation process. The occurrence of double peak has been predicted to have close correlation with the observance of memory effect in DHFLC material, which is critically dependent on frequency and applied voltage, on the application of time delayed square wave pulse to the sample cell. The conditions for dynamic and static memory effects in DHFLC material have also been discussed in detail.
An effective interionic interaction potential is developed to study the pressure-induced phase transitions from zinc blende (B3) to rock salt (B1) structure in diluted magnetic semiconductors Zn 1−x MnxSe (x = 0.08 and 0.15). As a first step, the elastic constants, including the long-range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, the Slater-Kirkwood variational method is employed to estimate the vdW coefficients. The estimated values of the phase transition pressure (Pt) increase with Mn concentration. The vast volume discontinuity in the pressure volume phase diagram identifies the structural phase transition from zinc blende to rock salt structure. The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is noticed that the vdW interaction is effective in obtaining the thermodynamical parameters such as Debye temperature, Gruneisen parameter, and thermal expansion coefficient. However, the inconsistency in the value of pressure derivative of the theoretical and experimental value of C 44 is attributed to the fact that we have derived the expressions by assuming that the overlap repulsion is significant only up to nearest neighbors, as well as neglecting thermal effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.