In this study, a rational combination of 200 pre-selected Carbohydrate-Active enzymes (CAZymes) and sulfatases were tested, individually or combined, according to their ability to degrade Chlorella vulgaris cell wall to access its valuable nutritional compounds. The disruption of microalgae cell walls by a four-enzyme mixture (Mix) in comparison with the control, enabled to release up to 1.21 g/L of reducing sugars (p < 0.001), led to an eight-fold increase in oligosaccharides release (p < 0.001), and reduced the fluorescence intensity by 47% after staining with Calcofluor White (p < 0.001). The Mix treatment was successful in releasing proteins (p < 0.001), some MUFA (p < 0.05), and the beneficial 18:3 n -3 fatty acid (p < 0.05). Even if no variation was detected for chlorophylls (p > 0.05), total carotenoids were increased in the supernatant (p < 0.05) from the Mix treatment, relative to the control. Taken together, these results indicate that this four-enzyme Mix displays an effective capacity to degrade C. vulgaris cell wall. Thus, these enzymes may constitute a good approach to improve the bioavailability of C. vulgaris nutrients for monogastric diets, in particular, and to facilitate the cost-effective use of microalgae by the feed industry, in general.
It is now well established that exogenous β-1,4-xylanases improve the nutritive value of wheat-based diets for poultry. Among other factors, the mechanism of action of exogenous enzymes may involve a microbial route resulting from the generation of prebiotic xylo-oligosaccharides (XOS) in the birds' gastro-intestinal (GI) tract. In a series of three experiments, the effect of XOS on the performance of broilers fed wheat or corn-based diets was investigated. In experiment 1, birds receiving diets supplemented with XOS displayed an increased weight gain (P = 0.08). The capacity of XOS to improve the performance of animals during a longer trial (42 d) was investigated (Experiment 2). The data revealed that diet supplementation with XOS, tested at two incorporation rates (0.1 and 1 g/kg), or with an exogenous β-1,4-xylanase resulted in an increased nutritive value of the wheat-based diet. An improvement in animal performance was accompanied by a shift in the microbial populations colonizing the upper portions of the GI tract. XOS were also able to improve the performance of broilers fed a corn-based diet, although the effects were not apparent at incorporation rates of 10 g/kg. Together these studies suggest that in some cases the capacity of β-1,4-xylanases to improve the nutritive value of wheat-based diets is more related to their ability to produce prebiotic XOS than to their ability to degrade arabinoxylans. The extremely low quantities of XOS used in this study also challenge the depiction of a prebiotic being a quantitatively fermented substrate. These data also bring into question the validity of the "cell wall" mechanism, as XOS elicited an effect with clearly no action on endosperm cell wall integrity and yet the performance effects noted were equivalent or superior to the added enzymes.
Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.