The discovery of superconductivity at 203 K in H3S 1 brought attention back to conventional superconductors whose properties can be described by the Bardeen-Cooper-Schrieffer (BCS) and the Migdal-Eliashberg theories. These theories predict that high, and even room temperature superconductivity (RTSC) is possible in metals possessing certain favorable parameters such as lattice vibrations at high frequencies. However, these general theories do not suffice to predict real superconductors. New superconducting materials can be predicted now with the aid of first principles calculations based on Density Functional Theory (DFT). In particular, the calculations suggested a new family of hydrides possessing a clathrate structure, where the host atom (Ca, Y, La) is at the center of the cage formed by hydrogen atoms 2-4 . For LaH10 and YH10 superconductivity, with critical temperatures Tc ranging between 240 and 320 K is predicted at megabar pressures 3-6 . Here, we report superconductivity with a record Tc 250 K within the Fm3m structure of LaH10 at a pressure P 170 GPa. We proved the existence of superconductivity at 250 K through the observation of zero-resistance, isotope effect, and the decrease of Tc under an external magnetic field, which suggests an upper critical magnetic field of 120 T at zerotemperature. The pressure dependence of the transition temperatures Tc (P) has a maximum of 250-252 K at the pressure of about 170 GPa. This leap, by 50 K, from the previous Tc record of 203 K 1 indicates the real possibility of achieving RTSC (that is at 273 K) in the near future at high pressures and the perspective of conventional superconductivity at ambient pressure.
The discovery of superconducting H3S with a critical temperature Tc∼200 K opened a door to room temperature superconductivity and stimulated further extensive studies of hydrogen-rich compounds stabilized by high pressure. Here, we report a comprehensive study of the yttrium-hydrogen system with the highest predicted Tcs among binary compounds and discuss the contradictions between different theoretical calculations and experimental data. We synthesized yttrium hydrides with the compositions of YH3, YH4, YH6 and YH9 in a diamond anvil cell and studied their crystal structures, electrical and magnetic transport properties, and isotopic effects. We found superconductivity in the Im-3m YH6 and P63/mmc YH9 phases with maximal Tcs of ∼220 K at 183 GPa and ∼243 K at 201 GPa, respectively. Fm-3m YH10 with the highest predicted Tc > 300 K was not observed in our experiments, and instead, YH9 was found to be the hydrogen-richest yttrium hydride in the studied pressure and temperature range up to record 410 GPa and 2250 K.
The role of the distortion of the hydrogen bond network and of the motions of the -CH 2SH side chains in the phase transition in the orthorhombic L-cysteine ( (+)NH 3-CH(CH 2SH)-COO (-)) on cooling and the reverse transformation on heating is discussed. The extended character of the phase transition, which was recently discovered by adiabatic calorimetry [ J. Phys. Chem. B 2007, 111, 9186 ], and its very high sensitivity to the thermal prehistory of the sample could be interpreted based on the changes in the polarized Raman spectra measured for the single-crystals in several orientations in the temperature range 3-300 K and precise diffraction data on the changes in intramolecular conformations and intermolecular hydrogen bonding. In the low-temperature phase the SH...S hydrogen bonds dominate as compared to the weaker SH...O contacts, and at ambient temperature the situation is inverse. The transition from one phase to another goes via a series of states differing in conformations of the cysteine zwitterions and the intermolecular contacts of the thiol-group. Motions of different molecular fragments (NH 3 (+), CH 2, CH, SH) are activated at different temperatures. Structural strain on cooling involves several dynamic processes, such as a rigid rotation of the molecule in the lattice, a rigid rotation of the NH 3 group with respect to NH 3-CH bond, and the rotation of the thiol side chain resulting in the switching of S-H hydrogen bonding from one type to another. Different NH...O hydrogen bonds forming the framework in the L-cysteine crystal structure are distorted to a different extent, and this provokes the rotation of the -CH 2SH side chains within the cavities of this framework resulting in a change in the coordination from SH...O to SH...S at low temperatures. The results are interesting for understanding the polymorphism of molecular crystals and the factors determining their dynamics and structural instability, and also for biophysical chemistry, since the properties of the hydrogen bonded thiole-groups in biomolecules can be mimicked using L-cysteine in the crystalline state, variations in temperature and pressure serving as powerful tools, to modify the intramolecular conformations and the intermolecular hydrogen bonding.
The discovery of superconductivity at 260 K in hydrogen-rich compounds like LaH 10 re-invigorated the quest for room temperature superconductivity. Here, we report the temperature dependence of the upper critical fields μ 0 H c2 ( T ) of superconducting H 3 S under a record-high combination of applied pressures up to 160 GPa and fields up to 65 T. We find that H c2 ( T ) displays a linear dependence on temperature over an extended range as found in multigap or in strongly-coupled superconductors, thus deviating from conventional Werthamer, Helfand, and Hohenberg (WHH) formalism. The best fit of H c2 ( T ) to the WHH formalism yields negligible values for the Maki parameter α and the spin–orbit scattering constant λ SO . However, H c2 ( T ) is well-described by a model based on strong coupling superconductivity with a coupling constant λ ~ 2. We conclude that H 3 S behaves as a strong-coupled orbital-limited superconductor over the entire range of temperatures and fields used for our measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.