A superconductor is a material that can conduct electricity with no resistance below its critical temperature (T c ). The highest T c that has been achieved in cuprates 1 is 133 K at ambient pressure 2 and 164 K at high pressures 3 . As the nature of superconductivity in these materials has still not been explained, the prospects for a higher T c are not clear. In contrast, the BardeenCooper-Schrieffer (BCS) theory gives a guide for achieving high T c and does not put bounds on T c , all that is needed is a favorable combination of high frequency phonons, strong electronphonon coupling, and a high density of states. These conditions can be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen 4,5 . Numerous calculations support this idea and predict T c of 50-235 K for many hydrides 6 but only moderate T c =17 K has been observed experimentally 7 . Here we studied sulfur hydride 8 where a T c 80 K was predicted 9 . We found that it transforms to a metal at pressure 90 GPa. With cooling superconductivity was found deduced from a sharp drop of the resistivity to zero and a decrease of T c with magnetic field. The pronounce isotope shift of T c in D 2 S is evidence of an electron-phonon mechanism of superconductivity that is consistent with the BCS scenario. The superconductivity has been confirmed by magnetic susceptibility measurements with T c =203 K. The high T c superconductivity most likely is due to H 3 S which is formed from H 2 S under its decomposition under pressure. Even higher T c , room temperature superconductivity, can be expected in other hydrogen-based materials since hydrogen atoms provide the high frequency phonon modes as well as the strong electron-phonon coupling.A search for high, room temperature conventional superconductivity is promising as the BardeenCooperSchrieffer (BCS) theory in the Eliashberg formulation puts no apparent limits on T c .Materials with light elements are especially favorable as they provide high frequencies in the phonon spectrum. Indeed many superconductive materials have been found in this way, but only a moderately high T c =39 K has been found in this search in MgB 2 10 . N. Ashcroft 4 turned attention to hydrogen which has very high vibrational frequencies due to the light hydrogen atom, and provides a strong electron-phonon interaction. Further calculations showed that metallic hydrogen should be a superconductor with a very high critical temperature T c 100-240 K for molecular hydrogen, and T c = 300-350 K in the atomic phase at 500 GPa 11 . However superconductivity in pure hydrogen has not yet been found while the conductive and likely Similar to pure hydrogen, they have high Debye temperatures. Moreover, heavier elements might be beneficial as they contribute to the low frequencies that enhance electron phonon coupling.Importantly, lower pressures are required to metallize hydrides in comparison to pure hydrogen.Ashcroft's general idea was supported in numerous calculations 6,9 predicting high T c`s for many hydrides. So far onl...
The discovery of superconductivity at 203 K in H3S 1 brought attention back to conventional superconductors whose properties can be described by the Bardeen-Cooper-Schrieffer (BCS) and the Migdal-Eliashberg theories. These theories predict that high, and even room temperature superconductivity (RTSC) is possible in metals possessing certain favorable parameters such as lattice vibrations at high frequencies. However, these general theories do not suffice to predict real superconductors. New superconducting materials can be predicted now with the aid of first principles calculations based on Density Functional Theory (DFT). In particular, the calculations suggested a new family of hydrides possessing a clathrate structure, where the host atom (Ca, Y, La) is at the center of the cage formed by hydrogen atoms 2-4 . For LaH10 and YH10 superconductivity, with critical temperatures Tc ranging between 240 and 320 K is predicted at megabar pressures 3-6 . Here, we report superconductivity with a record Tc 250 K within the Fm3m structure of LaH10 at a pressure P 170 GPa. We proved the existence of superconductivity at 250 K through the observation of zero-resistance, isotope effect, and the decrease of Tc under an external magnetic field, which suggests an upper critical magnetic field of 120 T at zerotemperature. The pressure dependence of the transition temperatures Tc (P) has a maximum of 250-252 K at the pressure of about 170 GPa. This leap, by 50 K, from the previous Tc record of 203 K 1 indicates the real possibility of achieving RTSC (that is at 273 K) in the near future at high pressures and the perspective of conventional superconductivity at ambient pressure.
A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure1, 2. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with theoretically predicted body-centered cubic (bcc) structure for H3S (Ref.3). The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure4–6.
The discovery of superconducting H3S with a critical temperature Tc∼200 K opened a door to room temperature superconductivity and stimulated further extensive studies of hydrogen-rich compounds stabilized by high pressure. Here, we report a comprehensive study of the yttrium-hydrogen system with the highest predicted Tcs among binary compounds and discuss the contradictions between different theoretical calculations and experimental data. We synthesized yttrium hydrides with the compositions of YH3, YH4, YH6 and YH9 in a diamond anvil cell and studied their crystal structures, electrical and magnetic transport properties, and isotopic effects. We found superconductivity in the Im-3m YH6 and P63/mmc YH9 phases with maximal Tcs of ∼220 K at 183 GPa and ∼243 K at 201 GPa, respectively. Fm-3m YH10 with the highest predicted Tc > 300 K was not observed in our experiments, and instead, YH9 was found to be the hydrogen-richest yttrium hydride in the studied pressure and temperature range up to record 410 GPa and 2250 K.
High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.