The focus of today’s agriculture is to reduce fuel consumption and pollutant emission. More than 50% of the fuel energy is lost with the exhaust gas and coolant of diesel engines. Therefore, waste heat recovery systems are a promising concept to meet economical and ecological requirements. Agricultural vehicles have an operating cycle that is quite different from on-road trucks (higher engine load factor and less annual utilization). This has influence on the efficiency of waste heat recovery. The purpose of this paper was to analyze different waste heat recovery technologies to be used in agricultural applications. In the study, technical and economic indicators have been used. According to suggested classification, four pathways for utilization were studied. Turbocompounding, electric turbocompounding, and heating of transmission oil for hydraulic clutch gearboxes have proved to be effective for agricultural vehicles. For the economical conditions of the European Union (EU), a turbocompounding diesel engine is acceptable if agricultural tractor rated power is more than 275 kW, and combine harvester rated power is more than 310 kW. In cold climates, heat recovery transmission warm-up may be recommended. Waste heat absorption refrigerators have proven to be a viable technology for air conditioning and intake air cooling systems.
Mitigation of climate change requires a decrease in greenhouse gas emissions. It motivates an increase in renewable electricity generation. Farmers can develop renewable energy and increase their profitability by allocating agricultural land to PV power plants. This transition from crop production to electricity generation needs ecological and economic assessment from alternative land utilization. The novelty of this study is an integrated assessment that links economic and environmental (carbon dioxide emissions) indicators. They were calculated for crop production and solar power generation in a semi-arid zone. The results showed that gross income (crop production) ranges from USD 508/ha to USD 1389/ha. PV plants can generate up to 794 MWh/ha. Their market cost is EUR 82,000, and their production costs are less than wholesale prices in Ukrainian. The profitability index of a PV project ranges from 1.26 (a discount range is 10%) to 3.24 (a discount rate is 0). The sensitivity analysis was carried out for six variables. For each chosen variable, we found its switching value. It was revealed that the most sensitive variable is a feed-in tariff. Operational expenses and investment costs are the most sensitive variables. Carbon dioxide footprints range from 500 to 3200 kgCO2/ha (depending on the crop). A 618 kW PV plant causes a release of carbon dioxide in the range of 5.2–11.4 gCO2/kWh. The calculated carbon dioxide payback period varies from 5 to 10 months.
In the conditions of a high drought of climate of the Nikolaev area and fluctuations of temperature on years the important direction of increase of productivity of arable land is cultivation of drought-resistant cultures and improvement of the technological receptions directed on creation of highly productive agrocenoses. Sorghum is a crop that can withstand high temperatures and prolonged droughts: to consume one kg of dry matter, it consumes almost 1.5 times less water than corn and 2 times less than cereals. Its value is also due to the versatility of use, the ability to give stable yields, the possibility of growing on unproductive soils. This article evaluates the energy efficiency of growing sugar and grain sorghum in the context of climate change. Keywords: energy equivalent, energy efficiency coefficient, energy costs, grain sorghum, sweet sorghum, biofuel, energy efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.