Rainfall variability and water scarcity continue to hamper the food and income security of smallholder farming systems in poverty-affected regions. Innovations in soil and water management, especially in the drylands, are critical for meeting food security and water productivity targets of Agenda 2030. This study analyzes how rainfed agriculture can be intensified with marginal impact on the landscape water balance. The impact of rainwater harvesting structures on landscape hydrology and associated agricultural services was analyzed in the semi-arid Jhansi district of Bundelkhand region in central India. The Parasai-Sindh pilot watershed was subjected to a 5-year (2012-2016) monitoring of rainfed system improvements in water availability and crop intensification due to surface water storage (haveli system), check dams, and field infiltration structures. Hydrological processes were monitored intensively to analyze the landscape's water balance components. Rainwater harvesting (RWH) structures altered the landscape's hydrology, limiting average surface runoff from 250 mm/year to 150 mm/year over the study period. Groundwater levels increased by 2-5 m (m), alleviating water scarcity issues of the communities in recurring dry years. Nearly 20% of fallow lands were brought under cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.