The present study aimed to improve solubility and prolong the release duration of a poorly soluble drug using a combination of two different types of formulations (solid dispersion and microspheres). The solid dispersions were prepared by fusion method using urea and mannitol as hydrophilic carriers. Microspheres were prepared by solvent evaporation method using Eudragit L-100 (EL100) and Eudragit RS PO (ERS) as rate-controlling polymers. Flurbiprofen (FBP)-urea (1:2) solid dispersion and microspheres of FBP-EL-100-ERS (1:0.25:0.75) were used for the development of controlled release formulation by mixing them in different proportions. The FBP-containing formulations were evaluated for percentage yield, drug content, morphology, in vitro release, and in vivo anti-inflammatory activity. The best selected formulation was further evaluated for the controlled and improved effects. SEM photomicrograph confirmed the spherical shape of microspheres and with particle size in the range of 73.5-85.4 μm. In vitro release of FBP from controlled release formulations indicated that the formulation containing solid dispersion:microspheres (1:0.5) yielded prolonged effect up to 10 h. The release kinetics followed zero-order, and the mechanism of drug release was found to be diffusion rate controlled. This formulation had shown better inhibition of edema of rat paw up to 16 h and identified as a suitable product for controlled delivery of FBP. In conclusion, the concept of using a binary mixture of solid dispersion and microspheres can be used for other drugs that exhibit a poor solubility in stomach pH and a faster release in intestinal pH.
These findings suggest formulations containing norfloxacin and metronidazole may also prove as an effective alternative for existing remedies in the treatment of bacterial infections and burn wounds.
Unfortunately, till date, limited papers are available which reported the challenges associated with decontamination methods to prepare hydrogels and biomaterials for biological applications. In conclusion, each case of biomaterial requires individual consideration to decontamination and/or sterilization. This must be submitted to a specific method, but more than one technique can be involved. Physicochemical and biological alterations must be avoided and evaluated by the appropriate assays method. Furthermore, it is also important to consider that each method must be validated depending upon the process variables.
The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.