Green urbanism has stimulated more research on the aerodynamics of tree in recent years. The insight gained in studying wind load on trees would mitigate risk of tree falling and enable sustainable landscape planning. However, deciphering the effect of wind on trees is a daunting task because trees come in various species, shapes and sizes. In this study, we aim at conducting wind tunnel tests on various species of trees, including measuring the respective drag coefficient and turbulent flow field using a force balance and particle image velocimetry system. The wind tunnel experiment is conducted using scaled down fractal tree model at 10 and 15 m/s. The 3D-printed tree model is grown based on the data collected on the species-specific tree parameters, such as the height, trunk diameters, crown box dimensions, etc. In this paper, the wind tunnel result of Yellow Flame (Peltophorum pterocarpum) is presented. Results show that the drag coefficient for this inflexible tree model is not sensitive to wind speed. The Reynolds shear stress and turbulence kinetic energy are observed to be the largest at the top and bottom of the crown where the velocity gradients are the highest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.