The question of invisibility for bodies with mirror surface is studied in the framework of geometrical optics. We construct bodies that are invisible/have zero resistance in two mutually orthogonal directions, and prove that there do not exist bodies which are invisible/have zero resistance in all possible directions of incidence.Mathematics subject classifications: 37D50, 49Q10
International audienceWe continue the study of the directed subdifferential for quasidifferentiable functions started in [R. Baier, E. Farkhi, V. Roshchina, The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I: Definition and examples (this journal)]. Calculus rules for the directed subdifferentials of sum, product, quotient, maximum and minimum of quasidifferentiable functions are derived. The relation between the Rubinov subdifferential and the subdifferentials of Clarke, Dini, Michel-Penot, and Mordukhovich is discussed. Important properties implying the claims of Ioffe's axioms as well as necessary and sufficient optimality conditions for the directed subdifferential are obtained
We address the conjecture proposed by Gábor Pataki that every facially exposed cone is nice. We show that the conjecture is true in the three-dimensional case, however, there exists a four-dimensional counterexample of a cone that is facially exposed but is not nice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.