We present the growth and electro-optical characteristics of highly transparent AlGaN-based tunnel heterojunction light-emitting diodes (LEDs) emitting at 232 nm entirely grown by metalorganic vapor phase epitaxy (MOVPE). A GaN:Si interlayer was embedded into a highly Mg- and Si-doped
Al
0.87
Ga
0.13
N
tunnel junction to enable polarization field enhanced tunneling. The LEDs exhibit an on-wafer integrated emission power of 77 μW at 5 mA, which correlates to an external quantum efficiency (EQE) of 0.29% with 45 μW emitted through the bottom sapphire substrate and 32 μW emitted through the transparent top surface. After depositing a highly reflective aluminum reflector, a maximum emission power of 1.73 mW was achieved at 100 mA under pulsed mode operation with a maximum EQE of 0.35% as collected through the bottom substrate.
The electro‐optical characteristics of deep ultraviolet light‐emitting diodes (DUV LEDs) emitting at 265 nm and grown on AlN/sapphire templates with different threading dislocation densities, i.e., high‐temperature annealed (HTA) AlN, epitaxially laterally overgrown (ELO) AlN, and HTA‐ELO AlN are analyzed. The external quantum efficiency of each individual device is separated into maximum radiative recombination efficiency, carrier injection efficiency, and light extraction efficiency. This is achieved by combining an ABC‐model‐based fit of the current‐dependent external quantum efficiency together with calibrated Monte Carlo ray‐tracing simulations. A maximum radiative recombination efficiency between 50% and 60% is estimated for DUV LEDs grown on ELO and HTA‐ELO AlN/sapphire, whereas the values for devices grown on HTA AlN/sapphire are around 45%. The extracted radiative recombination efficiency does not scale with the measured threading dislocation density (TDD), even when accounting for the inhomogeneous TDD in the AlN base layers. This discrepancy is attributed to the formation of dislocation half‐loops introduced by additional compressive strain caused by the HTA process and may result in the formation of additional nonradiative recombination centers in the AlGaN multi‐quantum well region. In addition, the carrier injection efficiency values ranging from 45% to 55% are determined for devices grown on all three templates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.