Despite prevention and treatment options, breast cancer (BC) has become one of the most important issues in the present day. Therefore, the need for more specific and efficient compounds remains paramount. We evaluated four previously isolated aryltetralin lignans: 5 1 -demethoxy-β-peltatin-A-methylether (1), acetylpodophyllotoxin (2), 5 1 -demethoxydeoxypodophyllotoxin (3), and 7 1 ,8 1 -dehydroacetylpodophyllotoxin (4) for cytotoxicity, clonogenicity, and selectivity against three BC cell lines: MCF-7, MDA-MB-231, and BT-549, as well as the non-tumorigenic mammary epithelial cell line MCF-10A. Cytotoxicity was evaluated after 72 h of treatment, and clonogenicity was determined at 72 h post-treatment; experiments were performed using the sulforhodamine B staining assay. Selective-index (SI) was calculated by comparing pure compound IC 50 values in MCF-10A cell line against the IC 50 of the same compound in cancer cell lines. Structural similarities among lignans and controls (podophyllotoxin and etoposide) were analyzed using the Tanimoto coefficient (Tc). Lignans were cytotoxic against all tested cell lines (0.011-7.22 µM) and clonogenicity testing showed a dose-dependent cytocidality for all lignans (ě0.08 µg/mL); compounds 2 and 3 were more potent (14.1 and 7.6 respectively) than etoposide in BT-549 cell line, while compound 2 displayed selectivity (SI = 28.17) in BT-549 cell line. Tc values of lignans suggested a greater similarity with podophyllotoxin structure.
Background Bursera copallifera (Burseraceae) releases a resin known as “copal ancho” which has been used, since pre-Colombian times, as ceremonially burned incense and to treat tooth ache, tumors, arthritis, cold, cough, and various inflammatory conditions; however, its anti-inflammatory potential is poorly studied. The aim of the present study was to isolate, quantify, and to investigate the anti-inflammatory activity of triterpene compounds isolated from the copal resin of B. copallifera.MethodsThe constituents present in the total resin of B. copallifera were obtained by successive chromatographic procedures, and quantitative analysis was performed by High Performance Liquid Chromatography (HPLC). Anti-inflammatory effects of the isolated triterpenes were investigated to determine their inhibitory effects on phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema in mice, viability and nitric oxide (NO) production inhibition on lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and inhibition of cyclooxygenase (COX)-1, COX-2 and secretory Phospholipase A2 (sPLA2) activities in vitro.ResultsQuantitative phytochemical analysis of the copal resin showed the presence of six pentacyclic triterpenes of which, 3-epilupeol (59.75 % yield) and α-amyrin (21.1 % yield) are the most abundant. Among the isolated triterpenes, 3-epilupeol formiate (Inhibitory Concentration 50 % (IC50) = 0.96 μmol), α.amyrin acetate (IC50 = 1.17 μmol), lupenone (IC50 = 1.05 μmol), and 3-epilupeol (IC50 = 0.83 μmol) showed marked inhibition of the edema induced by TPA in mice. α-amyrin acetate and 3-epilupeol acetate, at 70 μM, also inhibited the activity of COX-2 by 62.85 and 73.28 % respectively, while α-amyrin and 3-epilupeol were the best inhibitors of the production of NO in LPS-activated RAW 264.7 cells with IC50 values of 15.5 and 8.98 μM respectively, and did not affected its viability. All compounds moderately inhibited the activity of PLA2.ConclusionsThis work supports the folk use of B. copallifera and provides the basis for future investigations about the therapeutic use of this resin in treating inflammation.
Abstract:Tree species are potential hosts for epiphytes; however in some forests epiphytes have a biased distribution among hosts. In a tropical dry forest of Mexico, previous research showed that there are trees with few epiphytes. It is possible that the bark of these hosts contain allelochemicals that influence epiphyte seed germination. The aims of this study were (1) to determine whether hosts with low epiphyte abundance (Ipomoea murucoides, I. pauciflora and Lysiloma acapulcense) would inhibit seed germination of Tillandsia recurvata through aqueous and organic bark extracts, (2) to determine whether germination of T. recurvata would differ among the hosts with low epiphyte abundance and a host with high epiphyte abundance (Bursera copallifera) and (3) to relate the chemical composition of organic bark extracts with inhibition of T. recurvata seed germination. Hexanic and dichloromethanic extracts were partially chemically characterized. Total phenolics and flavonoids concentrations of methanolic extracts were analysed. Aqueous and organic bark extracts from hosts with few epiphytes inhibited T. recurvata seed germination. Aqueous and dichloromethanic extracts of B. copallifera inhibited slightly the germination of T. recurvata. There was a positive correlation between concentration of flavonoids and inhibition of seed germination. Results suggest that a combination of compounds may be responsible for affecting the germination of T. recurvata. This study demonstrates the chemical effect of aqueous and organic bark extracts from hosts on germination of an epiphytic bromeliad.
Castilleja tenuiflora (Orobanchaceae) has been used in Mexican traditional medicine as a treatment for cough, dysentery, anxiety, nausea and vomiting as well as hepatic and gastrointestinal diseases. The ethanolic extract of the aerial parts of Castilleja tenuiflora was separated by silica gel column chromatography. The fractions were evaluated using the induced edema acetate 12-O-tetradecanoylphorbol (TPA) anti-inflammatory activity model. The most active fraction was subjected to medium-pressure liquid chromatography (MPLC) with UV detection at 206 and 240 nm. The following iridoids were isolated: geniposidic acid, aucubin, bartioside, 8-epi-loganin, mussaenoside, and the phenylpropanoid verbascoside. The most active iridoid was geniposidic acid, which was more active than the control (indomethacin), and the least active iridoid was mussaenoside. 8-epi-Loganin, and mussaenoside have not been previously reported to be anti-inflammatory compounds. The results of these investigations confirm the potential of 12110Mexican plants for the production of bioactive compounds and validate the ethnomedical use of Castilleja tenuiflora-like anti-inflammatory plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.