We compare the performance of luminescent solar concentrators ͑LSCs͒ fabricated with polymers and quantum dots to the behavior of laser dye LSCs. Previous research, centered around the use of small molecule laser dyes, was hindered by the lack of materials with small absorption/emission band overlap and longer lifetime. Materials such as semiconducting polymers and quantum dots present qualities that are desirable in LSCs, for example, smaller absorption/emission band overlap, tunable absorption, and longer lifetimes. In this study, the efficiency of LSCs consisting of liquid solutions of semiconducting polymers encased in glass was measured and compared to the efficiency of LSCs based on small molecule dyes and on quantum dots. Factors affecting the optical efficiency of the system such as the luminescing properties of the organic materials were examined. The experimental results were compared to Monte Carlo simulations. Our results suggest that commercially available quantum dots cannot serve as viable LSC dyes because of their large absorption/emission band overlaps and relatively low quantum yields. Materials such as Red F demonstrate that semiconducting polymers with high quantum yield and small absorption/emission band overlap are good candidates for LSCs.
Abstract— Methods used to deposit and integrate solution‐processed materials to fabricate TFT backplanes by ink‐jet printing are discussed. Thematerials studied allow the development of an all‐additive process in which materials are deposited only where their functionality is required. The metal layer and semiconductor are printed, and the solution‐processed dielectric is spin‐coated. Silver nanoparticles are used as gate and datametals, the semiconductor used is a polythiophene derivative (PQT‐12), and the gate dielectric is an epoxy‐based photopolymer. The maximum processing temperature used is 150°C, making the process compatible with flexible substrates. The ION/IOFF ratio was found to be about 105−106, and TFT mobilities of 0.04 cm2/V‐sec were obtained. The influence of surface treatments on the size and shape of printed features is presented. It is shown that coffee‐stain effects can be controlled with ink formulation and that devices show the expected pixel response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.