Interleukin-6 (IL-6) is increased in maternal serum and amniotic fluid of children subsequently diagnosed with autism spectrum disorders. However, it is not clear how increased IL-6 alters brain development. Here, we show that IL-6 increases the prevalence of a specific platelet-derived growth factor (PDGF)-responsive multipotent progenitor, with opposite effects on neural stem cells and on subsets of bipotential glial progenitors. Acutely, increasing circulating IL-6 levels 2-fold above baseline in neonatal mice specifically stimulated the proliferation of a PDGF-responsive multipotential progenitor accompanied by increased phosphorylated STAT3, increased Fbxo15 expression, and decreased Dnmt1 and Tlx expression. Fate mapping studies using a Nestin-CreERT2 driver revealed decreased astrogliogenesis in the frontal cortex. IL-6-treated mice were hyposmic; however, olfactory bulb neuronogenesis was unaffected. Altogether, these studies provide important insights into how inflammation alters neural stem cells and progenitors and provide new insights into the molecular and cellular underpinnings of neurodevelopmental disorders associated with maternal infections.
3D bioprinting is an additive manufacturing method, formulated with cells printed in bioinks of basic matrix such as hydrogels. Bioinks are relevant to precision medicine mainly due to recapitulation of tissue organoids with broad application. 3D bioprinting can address the issue of increased cost in drug development with overall benefit in healthcare. Despite research, solid and hematological cancer remain a clinical problem. Existing models such as patient-derived xenografts and organoids, although beneficial, have limitations. This perspective discusses 3D bioprinting in key clinical issues to hasten treatment to patients. The diseases addressed are aging, cancer metastasis, cancer dormancy and drug screening. The perspective also discusses the application for other diseases and the future for 3D bioprinting in medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.