This paper proposes a multiphysics computational framework coupling biomechanics and aerodynamics for the simulation of bird flight. It features a biomechanical model based on the anatomy of a bird, which models the bones and feathers of the wing. The aerodynamic solver relies on a vortex particle-mesh method and represents the wing through an immersed lifting line, acting as a source of vorticity in the flow. An application of the numerical tool is presented in the modeling of the flight of a northern bald ibis (Geronticus eremita). The wing kinematics are imposed based on biological observations and controllers are developed to enable stable flight in a closed loop. Their design is based on a linearized model of flapping flight dynamics. The controller solves an underdetermination in the control parameters through minimization. The tool and the controllers are used in two simulations: one where the bird has to trim itself at a given flight speed, and another where it has to accelerate from a trimmed state to another at a higher speed. The bird wake is accurately represented. It is analyzed and compared to the widespread frozen-wake assumption, highlighting phenomena that the latter cannot capture. The method also allows the computation of the aerodynamic forces experienced by the flier, either through the lifting line method or through control-volume analysis. The computed power requirements at several flight speeds exhibit an order of magnitude and dependency on velocity in agreement with the literature.
Experimental characterization of bird flight without instrumenting the animal requires measuring the flow behind the bird in a wind tunnel. Models are used to link the measured velocities to the corresponding aerodynamic forces. Widely-used models can, however, prove inconsistent when evaluating the instantaneous lift. Yet, accurately estimating variations of lift is critical in order to reverse-engineer flapping flight. In this work, we revisit mathematical models of lift based on the conservation of momentum in a control volume around a bird. Using a numerical framework to represent a flapping bird wing and compute the flow around it, we mimic the conditions of a wind tunnel and produce realistic wakes, which we compare to experimental data. Providing ground truth measurements of the flow everywhere around the simulated bird, we assess the validity of several lift estimation techniques. We observe that the circulation-based component of the instantaneous lift can be retrieved from measurements of velocity in a single plane behind a bird, with a latency that is found to depend directly on the free-stream velocity. We further show that the lift contribution of the added-mass effect cannot be retrieved from such measurements and quantify the level of approximation due to ignoring this contribution in instantaneous lift estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.