Monte-Carlo rendering algorithms have traditionally a high computational cost, because they rely on tracing up to billions of light paths through a scene to physically simulate light transport. Traditional path reusing amortizes the cost of path sampling over multiple pixels, but introduces visually unpleasant correlation artifacts and cannot handle scenes with specular light transport. We present gradient-domain path reusing , a novel unbiased Monte-Carlo rendering technique, which merges the concept of path reusing with the recently introduced idea of gradient-domain rendering. Since correlation is a key element in gradient sampling, it is a natural fit to be performed together with path reusing and we show that the typical artifacts of path reusing are significantly reduced by exploiting the gradient domain. Further, by employing the tools for shifting paths that were designed in the context of gradient-domain rendering over the last years, we can generalize path reusing to support arbitrary scenes including specular light transport. Our method is unbiased and currently the fastest converging unidirectional rendering technique outperforming conventional and gradient-domain path tracing by up to almost an order of magnitude.
Monte Carlo methods for physically‐based light transport simulation are broadly adopted in the feature film production, animation and visual effects industries. These methods, however, often result in noisy images and have slow convergence. As such, improving the convergence of Monte Carlo rendering remains an important open problem. Gradient‐domain light transport is a recent family of techniques that can accelerate Monte Carlo rendering by up to an order of magnitude, leveraging a gradient‐based estimation and a reformulation of the rendering problem as an image reconstruction. This state of the art report comprehensively frames the fundamentals of gradient‐domain rendering, as well as the pragmatic details behind practical gradient‐domain uniand bidirectional path tracing and photon density estimation algorithms. Moreover, we discuss the various image reconstruction schemes that are crucial to accurate and stable gradient‐domain rendering. Finally, we benchmark various gradient‐domain techniques against the state‐of‐the‐art in denoising methods before discussing open problems.
Spectral Monte‐Carlo methods are currently the most powerful techniques for simulating light transport with wavelength‐dependent phenomena (e.g., dispersion, colored particle scattering, or diffraction gratings). Compared to trichromatic rendering, sampling the spectral domain requires significantly more samples for noise‐free images. Inspired by gradient‐domain rendering, which estimates image gradients, we propose spectral gradient sampling to estimate the gradients of the spectral distribution inside a pixel. These gradients can be sampled with a significantly lower variance by carefully correlating the path samples of a pixel in the spectral domain, and we introduce a mapping function that shifts paths with wavelength‐dependent interactions. We compute the result of each pixel by integrating the estimated gradients over the spectral domain using a one‐dimensional screened Poisson reconstruction. Our method improves convergence and reduces chromatic noise from spectral sampling, as demonstrated by our implementation within a conventional path tracer.
Physically based rendering is a well‐understood technique to produce realistic‐looking images. However, different algorithms exist for efficiency reasons, which work well in certain cases but fail or produce rendering artefacts in others. Few tools allow a user to gain insight into the algorithmic processes. In this work, we present such a tool, which combines techniques from information visualization and visual analytics with physically based rendering. It consists of an interactive parallel coordinates plot, with a built‐in sampling‐based data reduction technique to visualize the attributes associated with each light sample. Two‐dimensional (2D) and three‐dimensional (3D) heat maps depict any desired property of the rendering process. An interactively rendered 3D view of the scene displays animated light paths based on the user's selection to gain further insight into the rendering process. The provided interactivity enables the user to guide the rendering process for more efficiency. To show its usefulness, we present several applications based on our tool. This includes differential light transport visualization to optimize light setup in a scene, finding the causes of and resolving rendering artefacts, such as fireflies, as well as a path length contribution histogram to evaluate the efficiency of different Monte Carlo estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.