Infrared multiphoton photodissociation (IRMPD) is combined with stored wave form inverse Fourier transforms (SWIFT) to effect dissociation and ion ejection in a quadrupole ion trap mass spectrometer. The application of IRMPD to the structural characterization of biochemical ions generated by chemical ionization and electrospray ionization and the feasibility of utilizing infrared photons for the activation of laser-desorbed metal ion-crown ether complexes was examined. The effect of helium pressure on the dissociation efficiency and relative dissociation rate constants for systems with well-known thermochemistry was evaluated. The helium pressure is not detrimental to the IRMPD experiment when nominal pressures lower than 2 x 10(-5) Torr are used. At pressures close to nominally 8 x 10(-5) Torr of helium, collisonal deactivation dominates. Results show conventional CAD is a more selective dissociation technique; however, the amount of fragment ion information generated depends highly on the qz value. IRMPD, on the other hand, is independent of the value of qz such that low rf storage values can be utilized during the irradiation period. Thus, under these conditions, informative lower mass fragment ions are trapped and detected. A larger number of structurally informative fragments is generated upon irradiation with infrared photons relative to the CAD method because of the further excitation of primary fragment ions upon photoabsorption. SWIFT wave forms are successfully utilized to determine the extent of excitation of primary fragment ions as well as prove/disprove dissociation pathways of a variety of ions such as macrolide antibiotics and hydrogen-bonded complexes.
We have undertaken a systematic study of the nature of quinolone metal complexes formed by electrospray ionization and laser desorption/ion-molecule reactions to evaluate the analytical utility of metal complexation as an alternative to conventional ionization via protonation. Metal ionization with laser-desorbed copper and nickel ions results in addition products of the form (L + Cu+) and (L + Ni+), respectively, where L is the quinolone, whereas addition-elimination products of the form (L + Co(+)-28) are observed when cobalt is used. The elimination of CO in order to form this unusual latter product seems to be favored by the formation of a cyclized structure that is stabilized by intramolecular hydrogen bonding. The CAD patterns of the Ni+ complexes prove to be the most structurally informative, more so than the fragmentation patterns of the protonated quinolones. Quinolone-metal complexes of the type [MII(L-H+)-(dipy)]+, where M is either Cu, Co, or Ni and dipy is 2,2'-dipyridine, are generated by electrospray ionization of a methanolic solution containing a quinolone antibiotic, a transition metal ion salt, and an auxiliary diimine ligand. Upon collisional activation, the ESI-generated complexes dissociate predominantly by loss of CO2, which is also the most common fragmentation pathway for the metal complexes formed through laser desorption/ion-molecule reactions. However, there are fewer structurally diagnostic fragment ions in the CAD spectra of the ESI complexes relative to those of the LD complexes.
We present results using simulations and experiments to demonstrate metrological applications of the through-focus scanning optical microscopy (TSOM) down to features at and well below the International Technology Roadmap for Semiconductors' 22 nm node. The TSOM method shows the ability to detect sub-nanometer, three-dimensional shape variations such as line height, sidewall angle, width, and pitch in fins of fin-shaped field effect transistor structures using conventional optical microscopes. In addition, the method requires targets substantially smaller than the conventional target size. These results provide insight into the applicability of TSOM for economical critical dimension and yield enhancement metrology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.