It has long been suggested that face recognition relies on specialized mechanisms that are not involved in visual recognition of other object categories, including those that require expert, fine-grained discrimination at the exemplar level such as written words. But according to the recently proposed many-to-many theory of object recognition (MTMT), visual recognition of faces and words are carried out by common mechanisms [Behrmann, M., & Plaut, D. C. ( 2013 ). Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17, 210-219]. MTMT acknowledges that face and word recognition are lateralized, but posits that the mechanisms that predominantly carry out face recognition still contribute to word recognition and vice versa. MTMT makes a key prediction, namely that acquired prosopagnosics should exhibit some measure of word recognition deficits. We tested this prediction by assessing written word recognition in five acquired prosopagnosic patients. Four patients had lesions limited to the right hemisphere while one had bilateral lesions with more pronounced lesions in the right hemisphere. The patients completed a total of seven word recognition tasks: two lexical decision tasks and five reading aloud tasks totalling more than 1200 trials. The performances of the four older patients (3 female, age range 50-64 years) were compared to those of 12 older controls (8 female, age range 56-66 years), while the performances of the younger prosopagnosic (male, 31 years) were compared to those of 14 younger controls (9 female, age range 20-33 years). We analysed all results at the single-patient level using Crawford's t-test. Across seven tasks, four prosopagnosics performed as quickly and accurately as controls. Our results demonstrate that acquired prosopagnosia can exist without word recognition deficits. These findings are inconsistent with a key prediction of MTMT. They instead support the hypothesis that face recognition is carried out by specialized mechanisms that do not contribute to recognition of written words.
A wealth of evidence from behavioural, neuropsychological and neuroimaging research supports the view that face recognition is reliant upon a domain-specific network that does not process words. In contrast, the recent many-to-many model of visual recognition posits that brain areas involved in word and face recognition are functionally integrated. Developmental prosopagnosia (DP) is characterised by severe deficits in the recognition of faces, which the many-to-many model predicts should negatively affect word recognition. Alternatively, domain-specific accounts suggest that impairments in face and word processing need not go hand in hand. To test these possibilities, we ran a battery of 7 tasks examining word processing in a group of DP cases and controls. One of our prosopagnosia cases exhibited a severe reading impairment with delayed response times during reading aloud tasks, but not lexical decision tasks. Overall, however, we found no evidence of global word processing deficits in DP, consistent with a dissociation account for face and word processing.
The orthographic uniqueness point (OUP) refers to the first letter of a word that, reading from left to right, makes the word unique. It has recently been proposed that OUPs might be relevant in word recognition and their influence could inform the long-lasting debate of whether – and to what extent – printed words are recognized serially or in parallel. The present study represents the first investigation of the neural and behavioral effects of OUP on visual word recognition. Behaviourally, late OUP words were identified faster and more accurately in a lexical decision task. Analysis of event-related potentials demonstrated a hemispheric asymmetry on the N170 component, with the left hemisphere appearing to be more sensitive to the position of the OUP within a word than the right hemisphere. These results suggest that processing of centrally presented words is likely to occur in a partially parallel manner, as an ends-in scanning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.