Modelling flow and mass transfer of thermal separation equipment constitutes one of the most challenging tasks in fluids process engineering. The difficulty of this task comes from the multiscale multiphase flow phenomena in rather complex geometries. Both analysis of flow and mass transfer on different scales as well as validation of models and simulation results require advanced experimental and measurement techniques. As a follow-up to intensive discussions during the 2019 Tutzing Symposium ''Separation Units 4.0'' a wide set of available modern experimental technologies is presented.
In an experimental study (October 2010 Mannheim Germany) with 99 Caucasian volunteers, the skin colour (L*, a*, b*) and the reflectance spectra of human skin were compared to the Fitzpatrick's sun-reactive skin photo types (SPT). For this purpose, the skin colour and the reflectance spectra of human skin were determined using non-invasive method with a newly developed fibre optic detection device. The device, based on reflectance spectroscopy, was designed and optimized using a commercial optical analysis Software. By means of the measured spectra of scattered light, the colour values and the absorption spectra of the skin were calculated. Neither any of the L*, a*, b* colour values nor any of the parameters of the absorbance spectra can be used alone to assess the skin type properly. Therefore, an ordinal logistic regression analysis was performed, using the statistical computing software r, to correlate the skin types with the measured optical parameters. It turned out that the detection device combined with the extended statistical analysis gives a better estimate of skin type in respect of the measured optical parameters than a procedure with only L*, a*, b* colour values. Even with the extended methodology, the procedure gives only a rough estimation of the skin type.
Zum Inline‐Monitoring der Schichtdickenverteilung in Fluidfilmen aller Art wurde ein bildanalytisches Verfahren entwickelt, das den Einsatz von gepulst betriebenen Nahinfrarot‐LEDs zur Beleuchtung nutzt. In Kombination mit einer NIR‐Kamera wurde die Möglichkeit eröffnet, bewegte Flüssigkeitsfilme zu überwachen. Im Rahmen des Beitrags werden die Möglichkeiten und derzeitigen Grenzen dieser Methode am Beispiel der Bestimmung der Schichtdickenverteilung von Wasser und Glycerin im Fallfilm dargestellt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.