Ion pairing is one of the most fundamental atomic interactions in chemistry and biology. In contrast, pairing between like-charged ions remains an elusive concept. So far, this phenomenon was observed only for large-scaled structures, assemblies, stabilizing frameworks, or in aqueous solution wherein like-charge attraction is supported by mediating water molecules. Recently, we reported the formation of cationic clusters in pure ionic liquids (ILs) which all include hydroxyl groups (OH) for possible hydrogen bonding. In such structures like-charge repulsion is overcome by cooperative hydrogen bonds. The vibrational bands in the OH-stretch region of the infrared spectra can be clearly assigned to H-bonded ion pairs (c-a) or to H-bonded cationic clusters (c-c). The equilibrium between both types of ionic clusters can be controlled by using the same cation but differently strong interacting anions. In the present work, we study the influence of the cationic cluster formation on structural and dynamical NMR properties of ionic liquids, where we know that they form cationic clusters to different extent. First, we measure proton chemical shifts, δH, and determine deuteron quadrupole coupling constants, χ, from a calculated relation between both NMR properties. Reliable χ values for the liquid phase are a prerequisite for calculating reorientational correlation times, τ, from measured deuteron relaxation times, T. It is shown that the correlation times are significantly influenced by the amount of cationic clusters present in the IL. The Stokes-Einstein-Debye (SED) relation is valid for the ILs wherein H-bonded ion pairs (c-a) are the dominant species. With increasing cationic cluster (c-c) formation of e.g. cyclic tetramers, SED breaks down because of the structural heterogeneities.
Im Unterricht werden häufig die „konventionellen“ fossilen Energieressourcen Erdgas, Erdöl und Kohle vorgestellt. Hier wird vorgeschlagen, auch Methanhydrate als potentielle fossile Energielieferanten im Unterricht zu thematisieren und den Schülerinnen und Schülern so die Möglichkeit zu geben, an einem aktuellen und nicht abgeschlossenen Forschungsthema teilzuhaben. Zur Veranschaulichung der Hydrat‐Strukturen lassen sich THF‐Clathrat‐Hydrate mit einfachen Mitteln in einer Unterrichtsstunde herstellen.
Titelbild (Anika Wilhelms): Das Foto zeigt ein oktaedrisches THF‐Clathrat‐Hydrat mit Schulter. Methanhydrate können als potentielle fossile Energielieferanten im Unterricht thematisiert werden und Einblicke in ein aktuelles und nicht abgeschlossenes Forschungsthema geben. Im Beitrag auf S. 59 wird gezeigt, wie sich solche THF‐Clathrat‐Hydrate mit einfachen Mitteln in einer Unterrichtsstunde herstellen lassen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.