We studied the properties of low-frequency (LF) heart rate variability (HRV) and photoplethysmographic waveform variability (PPGV) and their interaction under conditions where the hemodynamic connection between them is obviously absent, as well as the LF regulation of PPGV in the absence of heart function. The parameters of HRV and finger PPGV were evaluated in 10 patients during cardiac surgery under cardiopulmonary bypass (on-pump cardiac surgery) with or without cardioplegia. The following spectral indices of PPGV and HRV were ertimated: the total spectral power (TP), the highfrequency (HF) and the LF ranges of TP in percents (HF% and LF%), and the LF/HF ratio. We assessed also the index S of synchronization between the LF oscillations in finger photoplethysmogram (PPG) and heart rate (HR) signals. the analysis of directional couplings was carried out using the methods of phase dynamics modeling. it is shown that the mechanisms leading to the occurrence of oscillations in the LF range of PPGV are independent of the mechanisms causing oscillations in the LF range of HRV. At the same time, the both above-mentioned LF oscillations retain their activity under conditions of artificial blood circulation and cardioplegia (the latter case applies only to LF oscillations in PPG). In artificial blood circulation, there was a coupling from the LF oscillations in PPG to those in HR, whereas the coupling in the opposite direction was absent. the coupling from the Lf oscillations in ppG to those in HR has probably a neurogenic nature, whereas the opposite coupling has a hemodynamic nature (due to cardiac output).Despite the relatively widespread use of photoplethysmography to assess the state of peripheral blood flow 1,2 , the question of the physiological interpretation of the frequency components of photoplethysmographic waveform variability (PPGV) remains largely debatable. Usually, the nature of high-frequency (HF) oscillations in photoplethysmogram (PPG) signal is explained by the mechanical effect of respiration 3-5 , while the low-frequency (LF) oscillations (with a characteristic frequency of about 0.1 Hz) in PPG are associated with sympathetic regulation of peripheral vascular resistance 3,6,7 . It should be noted that besides the PPG, the LF fluctuations at a similar frequency are detected also in the signals of heart rate (HR) 8,9 and blood pressure (BP) 10,11 . Blood pressure variability (BPV) is primarily due to the vasomotor tone, which is not directly related to the heart control. Since blood flow through the distal arteries contributes to the formation of the finger PPG 12 , the autonomic regulation of BP can be indirectly assessed by the PPG signal.
We compare the spectral indices of photoplethysmogram variability (PPGV) estimated using photoplethysmograms recorded from the earlobe and the middle fingers of the right and left hand and analyze their correlation with similar indices of heart rate variability (HRV) in 30 healthy subjects (26 men) aged 27 (25, 29) years (median with inter-quartile ranges) at rest and under the head-up tilt test. The following spectral indices of PPGV and HRV were compared: mean heart rate (HR), total spectral power (TP), high-frequency (HF) and low-frequency (LF) ranges of TP in percents (HF% and LF%), LF/HF ratio, and spectral coherence. We assess also the index S of synchronization between the LF oscillations in HRV and PPGV. The constancy of blood pressure (BP) and moderate increase of HR under the tilt test indicate the presence of fast processes of cardiovascular adaptation with the increase of the sympathetic activity in studied healthy subjects. The impact of respiration on the PPGV spectrum (accessed by HF%) is less than on the HRV spectrum. It is shown that the proportion of sympathetic vascular activity (accessed by LF%) is constant in the PPGV of three analyzed PPGs during the tilt test. The PPGV for the ear PPG was less vulnerable to breathing influence accessed by HF% (independently from body position) than for PPGs from fingers. We reveal the increase of index S under the tilt test indicating the activation of interaction between the heart and distal vessels. The PPGV spectra for finger PPGs from different hands are highly coherent, but differ substantially from the PPGV spectrum for the ear PPG. We conclude that joint analysis of frequency components of PPGV (for the earlobe and finger PPGs of both hands) and HRV and assessment of their synchronization provide additional information about cardiovascular autonomic control.
This study aims to investigate the strength of synchronization between the autonomic control loops of the cardiovascular system (CVS) in patients with COronaVIrus Disease 2019 (COVID-19). Methods — We calculated the total percent of phase synchronization index (S index) between the loops of autonomic control of heart rate and vascular tone in two sample groups: healthy individuals and COVID-19 patients. Results — The group-average value of the S index in COVID-19 patients is lower comparing to healthy individuals, the Mann-Whitney U-test confirmed that the differences are statistically significant. Conclusion — Obtained results suggest that the decreased value of the S index reflects the presence of a viral disease, and the S index is a promising basis for non-invasive screening diagnostics of viral diseases, particularly of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.