Every year, millions of cancer patients undergo radiation therapy for treating and destroying abnormal cell growths within normal cell environmental conditions. Thus, ionizing radiation can have positive therapeutic effects on cancer cells as well as post-detrimental effects on surrounding normal tissues. Previous studies in the past years have proposed that the reduction and oxidation metabolism in cells changes in response to ionizing radiation and has a key role in radiation toxicity to normal tissue. Free radicals generated from ionizing radiation result in upregulation of cyclooxygenases (COXs), nitric oxide synthase (NOSs), lipoxygenases (LOXs) as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and their effected changes in mitochondrial functions are markedly noticeable. Each of these enzymes is diversely expressed in multiple cells, tissues and organs in a specific manner. Overproduction of reactive oxygen radicals (ROS), reactive hydroxyl radical (ROH) and reactive nitrogen radicals (RNS) in multiple cellular environments in the affected nucleus, cell membranes, cytosol and mitochondria, and other organelles, can specifically affect the sensitive and modifying enzymes of the redox system and repair proteins that play a pivotal role in both early and late effects of radiation. In recent years, ionizing radiation has been known to affect the redox functions and metabolism of NADPH oxidases (NOXs) as well as having destabilizing and detrimental effects on directly and indirectly affected cells, tissues and organs. More noteworthy, chronic free radical production may continue for years, increasing the risk of carcinogenesis and other oxidative stress-driven degenerative diseases as well as pathologies, in addition to late effect complications of organ fibrosis. Hence, knowledge about the mechanisms of chronic oxidative damage and injury in affected cells, tissues and organs following exposure to ionizing radiation may help in the development of treatment and management strategies of complications associated with radiotherapy (RT) or radiation accident victims. Thus, this medically relevant phenomenon may lead to the discovery of potential antioxidants and inhibitors with promising results in targeting and modulating the ROS/NO-sensitive enzymes in irradiated tissues and organ injury systems.
We recently demonstrated that natural delta-tocotrienol (DT3) significantly enhanced survival in total-body irradiated (TBI) mice, and protected mouse bone marrow cells from radiation-induced damage through Erk activation-associated mTOR survival pathways. Here, we further evaluated the effects and mechanisms of DT3 on survival of radiation-induced mouse acute gastrointestinal syndrome. DT3 (75-100 mg/kg) or vehicle was administered as a single subcutaneous injection to CD2F1 mice 24 h before 10-12 Gy (60)Co total-body irradiation at a dose rate of 0.6 Gy/min and survival was monitored. In a separate group of mice, jejunum sections were stained with hematoxylin and eosin and the surviving crypts in irradiated mice were counted. Apoptosis in intestinal epithelial cells was measured by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining and bacterial translocation from gut to heart, spleen and liver in irradiated mice were evaluated. DT3 (75 mg/kg) significantly enhanced survival in mice that received 10, 10.5, 11 or 12 Gy TBI. Administration of DT3 protected intestinal tissue, decreased apoptotic cells in jejunum and inhibited gut bacterial translocation in irradiated mice. Furthermore, DT3 significantly inhibited radiation-induced production of pro-inflammatory factors interleukin-1β and -6 and suppressed expression of protein tyrosine kinase 6 (PTK6), a stress-induced kinase that promotes apoptosis in mouse intestinal cells. Our data demonstrate that administration of DT3 protected mice from radiation-induced gastrointestinal system damage.
In this review, we focus on descriptive and hierarchical events with emphasis on the molecular and functional interactions of ionizing radiation with cells to the mechanisms involved in cancer induction in non-targeted tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.