The aim of this study was to investigate the effect of naringenin on the pharmacokinetics (PK) of felodipine in rats and membrane permeability across rat everted gut sacs in vitro. Rats were simultaneously co-administered with felodipine 10 mg/kg, p.o. and naringenin (25, 50 and 100 mg/kg, p.o.) for 15 consecutive days. Rats of the control groups received the corresponding volume of vehicle. Blood samples were withdrawn from retro-orbital plexus on first day in single dose PK study (SDS) and on 15th day in multiple dosing PK study (MDS). The PK parameters were calculated using Thermo kinetica. The co-administration of naringenin significantly elevated the Cmax and increased the AUCtotal of felodipine in dose-dependent manner. The Cmax of felodipine was increased from 173.25 ± 14.65 to 275.61 ± 44.62 and 223.26 ± 26.35 to 561.32 ± 62.53 ng/mL in SDS and MDS, respectively, at the dose of naringenin 100 mg/kg. The AUCtotal of felodipine was significantly (p < 0.001) increased from 2050.48 ± 60.57 to 3650.22 ± 78.61 and 3276.51 ± 325.61 to 7265.25 ± 536.11 (ng/mL/h) in SDS and MDS, respectively. The permeability of felodipine was increased in presence of naringenin and ritonavir (standard P-glycoprotein (P-gp) and Cytochrome P450 (CYP)3A4 inhibitor). Felodipine is a substrate of CYP3A4, and naringenin was reported to be a modulator of P-gp and CYP3A4. These results suggest that naringenin significantly increased the Cmax and AUC of felodipine is due to P-gp and CYP3A4 inhibition.
The effects of hesperetin on the pharmacokinetics and the role of P-glycoprotein (P-gp) in the transport of felodipine were investigated in rats and in vitro. Felodipine was administered orally (10 mg/kg) without or with hesperetin (25, 50 and 100 mg/kg) to rats for 15 consecutive days. Blood samples were collected at different time intervals on 1(st) day in single dose pharmacokinetic study (SDS) and on 15(th) day in multiple dose pharmacokinetic study (MDS). The area under the plasma concentration-time curve (AUC0-∞ ) and the peak plasma concentration (Cmax ) of felodipine were dose-dependently increased in SDS and MDS with hesperetin compared to control ( p < 0.001). The half-life (t1/2 ) and mean residence time was longer than the control group in both studies. The role of P-gp determined using everted rat gut sacs in vitro by incubating felodipine with or without hesperetin and verapamil (typical P-gp and CYP3A4 inhibitor). The in vitro experiments revealed that the verapamil and hesperetin increased the intestinal absorption of felodipine (p < 0.01). Concurrent use of hesperetin dramatically altered the pharmacokinetics of felodipine leading to an increase in systemic exposure. The likely mechanism is inhibition of CYP3A4-mediated first-pass metabolism and P-gp in the intestine and the liver.
Selegiline hydrochloride (SL), is an anti-Parkinson's agent, has low-oral bioavailability due to its high first pass metabolism and scarce oral absorption. In the present study, SL mucoadhesive nasal thermosensitive gel (SNT-gel) was prepared to enhance the bioavailability and subsequently, its concentration in the brain. The SNT-gel was prepared using Poloxamer 407-Chitosan combination and optimised formulation was further evaluated for physicochemical parameters. The comparative pharmacodynamic studies including behavioural studies, biochemical testing and histopathology of the brain was carried out in rats for SNT-gel, SL-nasal solution and SL Marketed Tablets. The optimised SNT-gel formulation (SNT-V) revealed sol-gel transition at 33-34°C. In-vitro diffusion study of SNT-V showed 102.37 ± 2.1% diffusion at 12 h which reduced to 89.64 ± 1.2% in Ex-vivo diffusion. Comparative results of behavioural studies indicated an improved score of photoactometer and reduced motor deficit (catalepsy score) in SNT-gel treatment group as compared with other groups. Similarly, a significant increase in brain dopamine, reduction in monoamine oxidase B level, increase in catalase activity and level of reduced glutathione upon treatment with SNT-gel indicated its effectiveness which was also supported by histopathology results. Therefore, nasal thermosensitive gel holds better potential for brain targeting in Parkinson's disease over the conventional nasal or oral formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.