The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.
Alloying different semiconductors is a powerful approach to tuning the optical and electronic properties of semiconductor materials. In halide perovskites (ABX), alloys with different anions have been widely studied, and great band gap tunability in the visible range has been achieved. However, perovskite alloys with different cations at the "B" site are less understood due to the synthetic challenges. Herein, we first have developed the synthesis of single-crystalline CsPb SnI nanowires (NWs). The electronic band gaps of CsPb SnI NWs can be tuned from 1.3 to 1.78 eV by varying the Pb/Sn ratio, which leads to the tunable photoluminescence (PL) in the near-infrared range. More importantly, we found that the electrical conductivity increases as more Sn is alloyed with Pb, possibly due to the increase of charge carrier concentration when more Sn is introduced. The wide tunability of the optical and electronic properties makes CsPb SnI alloy NWs promising candidates for future optoelectronic device applications.
Composition drift in batch polymerizations is a well-known phenomenon and can lead to composition gradients in polymers synthesized using controlled polymerization methodologies. With known reactivity ratios of monomers, the drift, and thus resultant gradient copolymer, can be designed by adjusting reagent ratios and targeted conversions. Although such prediction is straightforward, it is seldom done, likely due to the perceived difficulty and unfamiliarity for nonspecialists. We seek to remedy this by providing the communities using copolymers with an easy-to-use program called Compositional Drift which is based on the Mayo–Lewis model and the penultimate model of monomer addition, using Monte Carlo methodology. This tool can also be applied to predict composition in nondrifting polymerizations. Herein we supply this tool to the community, showcasing two recent examples of use to guide experimental design and understanding of heteropolymers (RHP).
We investigated size effects on thermoelectricity in thin films of a strongly correlated layered cobaltate. At room temperature, the thermopower is independent of thickness down to 6 nm. This unusual behavior is inconsistent with the Fuchs-Sondheimer theory, which is used to describe conventional metals and semiconductors, and is attributed to the strong electron correlations in this material. Although the resistivity increases, as expected, below a critical thickness of ∼ 30 nm. The temperature dependent thermopower is similar for different thicknesses but resistivity shows systematic changes with thickness. Our experiments highlight the differences in thermoelectric behavior of strongly correlated and uncorrelated systems when subjected to finite size effects. We use the atomic limit Hubbard model at the high temperature limit to explain our observations. These findings provide new insights on decoupling electrical conductivity and thermopower in correlated systems.
Cation‐disordered rocksalt (DRX) cathodes have recently emerged as a promising class of cobalt‐free, high‐capacity cathodes for lithium‐ion batteries. To facilitate their commercialization, the development of scalable synthesis techniques providing control over composition and morphology is critical. To this end, a sol‐gel synthesis route to prepare Mn‐rich DRX cathodes with high capacities is presented here. Several compositions with varied Mn content and nominal F doping are successfully prepared using this technique. In‐situ X‐ray diffraction measurements demonstrate that DRX formation proceeds at moderate temperature (800 °C) through the sol‐gel route, which enables intimate mixing among reactive intermediate phases that form at lower temperatures. All synthesized compositions possess cation short‐range order, as evidenced by neutron pair distribution function and electron diffraction analysis. These DRX materials demonstrate promising electrochemical performance with reversible capacities up to 275 mAh g. Compared to the baseline oxide (Li1.2Mn0.4Ti0.4O2), the Mn‐rich compositions exhibit improved cycling stability, with some showing an increase in capacity upon cycling. Overall, this study demonstrates the feasibility of preparing high‐capacity DRX cathodes through a sol‐gel based synthesis route, which may be further optimized to provide better control over the product morphology compared to traditional synthesis methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.