Résumé. -On décrit les foncteurs polynomiaux, des groupes abéliens libres vers les groupes abéliens, comme des diagrammes de groupes abéliens dont on explicite les relations.
Abstract (Polynomial functors and nonlinear Mackey functors)Polynomial functors from free abelian groups to abelian groups are described explicitely in the form of diagrams of abelian groups, that are maps between the crosseffects of the polynomial functor which satisfy a list of relations. The key is to use an appropriate notion of Mackey functor from the category of finite sets and surjections.Soient Ab la catégorie des groupes abéliens, et F (Z) sa sous-catégorie pleine dont les objets sont les groupes abéliens libres de type fini. On sait que la caté-gorie des foncteurs additifs de F (Z) vers Ab estéquivalenteà la catégorie Ab.
We initiate the study of the cohomology of (strict polynomial) bifunctors by introducing the foundational formalism, establishing numerous properties in analogy with the cohomology of functors, and providing computational techniques. Since one of the initial motivations for the study of functor cohomology was the determination of H *(GL (k), S*(gℓ) ⊗ Λ*(gℓ)), we keep this challenging example in mind as we achieve numerous computations which illustrate our methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.