We report the application of the hairpin-mediated RNA silencing technology for obtaining resistance to Plum pox virus (PPV) infection in Nicotiana benthamiana plants. Four sequences, covering the P1 and silencing suppressor HC-Pro genes of an Italian PPV M isolate, were introduced into N. benthamiana plants as two inverted repeats separated by an intron sequence under the transcriptional control of the Cauliflower Mosaic Virus 35S promoter. In a leaf disk infection assay, 38 out of 40 T0 transgenic plants were resistant to PPV infection. Eight lines, 2 for each construct, randomly selected among the 38 resistant plants were further analysed. Two hundred forty eight out of 253 T1 transgenic plants were resistant to local and systemic PPV infection. All transgenic single locus lines were completely resistant. These data indicate that the RNA silencing of PPV P1/HCPro sequences results in an efficient and predictable PPV resistance, which may be utilized in obtaining stone fruit plants resistant to the devastating Sharka disease.
Plum pox virus (PPV) is the etiological agent of sharka, the most devastating and economically important viral disease affecting Prunus species. It is widespread in most stone fruits producing countries even though eradication and quarantine programs are in place. The development of resistant cultivars and rootstocks remains the most ecologically and economically suitable approach to achieve long-term control of sharka disease. However, the few PPV resistance genetic resources found in Prunus germplasm along with some intrinsic biological features of stone fruit trees pose limits for efficient and fast breeding programs. This review focuses on an array of biotechnological strategies and tools, which have been used, or may be exploited to confer PPV resistance. A considerable number of scientific studies clearly indicate that robust and predictable resistance can be achieved by transforming plant species with constructs encoding intron-spliced hairpin RNAs homologous to conserved regions of the PPV genome. In addition, we discuss how recent advances in our understanding of PPV biology can be profitably exploited to develop viral interference strategies. In particular, genetic manipulation of host genes by which PPV accomplishes its infection cycle already permits the creation of intragenic resistant plants. Finally, we review the emerging genome editing technologies based on ZFN, TALEN and CRISPR/Cas9 engineered nucleases and how the knockout of host susceptibility genes will open up next generation of PPV resistant plants.
Farnesylpyrophosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis. Several classes of essential metabolites, including sterols, quinones, carotenoids and gibberellins, are terpenoids with high biological activity. The structural gene for FPP synthase was isolated from two ascomycete fungi, Neurospora crassa and Gibberella fujikuroi. A comparative analysis of the nucleotide sequences of both FPPS genes revealed the presence of introns at the same positions at the 5' end of the coding regions. Furthermore, the most conserved region of the gene was isolated from two other plant pathogenic fungi, Sphaceloma manihoticola and Claviceps purpurea, by PCR. Sequence analysis showed a high degree of similarity between the deduced proteins of all known FPP synthase genes. In contrast to animals, all analyzed fungi contain a single copy of the gene, although FPP is the precursor for essential sterol and quinone biosynthesis and secondary metabolites, such as gibberellins, as well. Transcription analysis in different light regimes has shown that the FPPS genes in G. fujikuroi and N. crassa are not regulated by light induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.