Face-selective neural responses in the human fusiform gyrus have been widely examined. However, their causal role in human face perception is largely unknown. Here, we used a multimodal approach of electrocorticography (ECoG), high-resolution functional magnetic resonance imaging (fMRI), and electrical brain stimulation (EBS) to directly investigate the causal role of face-selective neural responses of the fusiform gyrus (FG) in face perception in a patient implanted with subdural electrodes in the right inferior temporal lobe. High-resolution fMRI identified two distinct FG face-selective regions (mFus-faces and pFus-faces). ECoG revealed a striking anatomical and functional correspondence with fMRI data where a pair of face-selective electrodes, positioned one centimeter apart, overlapped mFus-faces and pFus-faces, respectively. Moreover, electrical charge delivered to this pair of electrodes induced a profound face-specific perceptual distortion during viewing of real faces. Specifically, the subject reported a “metamorphosed” appearance of faces of people in the room. Several controls illustrate the specificity of the effect to the perception of faces. EBS of mFus-faces and pFus-faces neither produced a significant deficit in naming pictures of famous faces on the computer, nor did it affect the appearance of nonface objects. Further, the appearance of faces remained unaffected during both sham stimulation and stimulation of a pair of nearby electrodes that were not face-selective. Overall, our findings reveal a striking convergence of fMRI, ECoG, and EBS, which together offer a rare causal link between functional subsets of the human FG network and face perception.
Is there a distinct area within the human visual system that has a preferential response to numerals, as there is for faces, words, or scenes? We addressed this question using intracranial electrophysiological recordings and observed a significantly higher response in the high-frequency broadband range (high γ, 65–150 Hz) to visually presented numerals, compared with morphologically similar (i.e., letters and false fonts) or semantically and phonologically similar stimuli (i.e., number words and non-number words). Anatomically, this preferential response was consistently localized in the inferior temporal gyrus and anterior to the temporo-occipital incisure. This region lies within or close to the fMRI signal-dropout zone produced by the nearby auditory canal and venous sinus artifacts, an observation that may account for negative findings in previous fMRI studies of preferential response to numerals. Because visual numerals are culturally dependent symbols that are only learned through education, our novel finding of anatomically localized preferential response to such symbols provides a new example of acquired category-specific responses in the human visual system.
Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-facerelated visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception.
Summary Human neuroimaging studies have suggested that subregions of the medial and lateral parietal cortex form key nodes of a larger brain network supporting episodic memory retrieval. To explore the electrophysiological correlates of functional connectivity between these subregions, we recorded simultaneously from medial and lateral parietal cortex using intracranial electrodes in three human subjects. We observed electrophysiological co-activation of retrosplenial/posterior cingulate cortex (RSC/PCC) and angular gyrus (AG) in the high frequency broadband (HFB, or high-gamma) range, for conditions that required episodic retrieval. During resting and sleeping states, slow fluctuations (< 1 Hz) of HFB activity were highly correlated between these task-co-activated neuronal populations. Furthermore, intrinsic electrophysiological connectivity patterns matched those obtained with resting state functional magnetic resonance imaging (fMRI) from the same subjects. Our findings quantify the spatiotemporal dynamics of parietal cortex during episodic memory retrieval and provide clear neurophysiological correlates of intrinsic and task-dependent functional connectivity in the human brain.
SUMMARY Anterior cingulate cortex (ACC) is known to be involved in functions such as emotion, pain, and cognitive control. While studies in humans and non-human mammals have advanced our understanding of ACC function, the subjective correlates of ACC activity have remained largely unexplored. In the current study, we show that electrical charge delivery in the anterior mid-cingulate cortex (aMCC) elicits autonomic changes and the expectation of an imminent challenge coupled with a determined attitude to overcome it. Seed-based, resting-state connectivity analysis revealed that the site of stimulation in both patients was at the core of a large-scale distributed network linking aMCC to the frontoinsular and frontopolar as well as some subcortical regions. This report provides compelling, first-person accounts of electrical stimulation of this brain network and suggests its possible involvement in psychopathological conditions that are characterized by a reduced capacity to endure psychological or physical distress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.