Decoding specific cognitive states from brain activity constitutes a major goal of neuroscience. Previous studies of brain-state classification have focused largely on decoding brief, discrete events and have required the timing of these events to be known. To date, methods for decoding more continuous and purely subject-driven cognitive states have not been available. Here, we demonstrate that free-streaming subject-driven cognitive states can be decoded using a novel whole-brain functional connectivity analysis. Ninety functional regions of interest (ROIs) were defined across 14 large-scale resting-state brain networks to generate a 3960 cell matrix reflecting whole-brain connectivity. We trained a classifier to identify specific patterns of whole-brain connectivity as subjects rested quietly, remembered the events of their day, subtracted numbers, or (silently) sang lyrics. In a leave-one-out cross-validation, the classifier identified these 4 cognitive states with 84% accuracy. More critically, the classifier achieved 85% accuracy when identifying these states in a second, independent cohort of subjects. Classification accuracy remained high with imaging runs as short as 30-60 s. At all temporal intervals assessed, the 90 functionally defined ROIs outperformed a set of 112 commonly used structural ROIs in classifying cognitive states. This approach should enable decoding a myriad of subject-driven cognitive states from brief imaging data samples.
We examined whether the effect of APOE genotype on functional brain connectivity is modulated by gender in healthy older human adults. Our results confirm significantly decreased connectivity in the default mode network in healthy older APOE ε4 carriers compared to ε3 homozygotes. More importantly, further testing revealed a significant interaction between APOE genotype and gender in the precuneus, a major default mode hub. Female ε4 carriers showed significantly reduced default mode connectivity compared to either female ε3 homozygotes or male ε4 carriers, whereas male ε4 carriers differed minimally from male ε3 homozygotes. An additional analysis in an independent sample of healthy elderly using an independent marker of Alzheimer’s disease, i.e. spinal fluid levels of tau, provided corresponding evidence for this gender by APOE interaction. Taken together, these results converge with previous work showing a higher prevalence of the ε4 allele among women with Alzheimer’s disease and, critically, demonstrate that this interaction between APOE genotype and gender is detectable in the preclinical period.
Summary
Human neuroimaging studies have suggested that subregions of the medial and lateral parietal cortex form key nodes of a larger brain network supporting episodic memory retrieval. To explore the electrophysiological correlates of functional connectivity between these subregions, we recorded simultaneously from medial and lateral parietal cortex using intracranial electrodes in three human subjects. We observed electrophysiological co-activation of retrosplenial/posterior cingulate cortex (RSC/PCC) and angular gyrus (AG) in the high frequency broadband (HFB, or high-gamma) range, for conditions that required episodic retrieval. During resting and sleeping states, slow fluctuations (< 1 Hz) of HFB activity were highly correlated between these task-co-activated neuronal populations. Furthermore, intrinsic electrophysiological connectivity patterns matched those obtained with resting state functional magnetic resonance imaging (fMRI) from the same subjects. Our findings quantify the spatiotemporal dynamics of parietal cortex during episodic memory retrieval and provide clear neurophysiological correlates of intrinsic and task-dependent functional connectivity in the human brain.
SUMMARY
Anterior cingulate cortex (ACC) is known to be involved in functions such as emotion, pain, and cognitive control. While studies in humans and non-human mammals have advanced our understanding of ACC function, the subjective correlates of ACC activity have remained largely unexplored. In the current study, we show that electrical charge delivery in the anterior mid-cingulate cortex (aMCC) elicits autonomic changes and the expectation of an imminent challenge coupled with a determined attitude to overcome it. Seed-based, resting-state connectivity analysis revealed that the site of stimulation in both patients was at the core of a large-scale distributed network linking aMCC to the frontoinsular and frontopolar as well as some subcortical regions. This report provides compelling, first-person accounts of electrical stimulation of this brain network and suggests its possible involvement in psychopathological conditions that are characterized by a reduced capacity to endure psychological or physical distress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.