Background: Powdery mildew (PM) is an important disease of pea that reduce yield. Ascophyllum nodosum extract (ANE) and chitosan (CHT) are biostimulants used to improve plant health. Efficacy of ANE and CHT was assessed individually and in combination against pea powdery mildew. Results: Combined applications of ANE and CHT had a significant inhibitory effect on pathogen development and it reduced disease severity to 35%, as compared to control (90.5%). The combination of ANE and CHT enhanced the activity of plant defense enzymes; phenylalanine ammonia lyases (PAL), peroxidase (PO) and production of reactive oxygen species (ROS) and hydrogen peroxide (H 2 O 2). Further, the treatment increased the expression of a number of plant defense genes in jasmonic acid (JA) signaling pathway such as LOX1 and COI and salicylic acid (SA)mediated signaling pathway such as NPR1 and PR1. Other genes involved in defense mechanisms like NADPH oxidase and C4H were also upregulated by the combination treatment. Conclusion: The combination of ANE and CHT suppresses pea powdery mildew largely by modulating JA and SAmediated signaling pathways.
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.