BackgroundSyndromic forms of osteosarcoma (OS) account for less than 10% of all recorded cases of this malignancy. An individual OS predisposition is also possible by the inheritance of low penetrance alleles of tumor susceptibility genes, usually without evidence of a syndromic condition. Genetic variants involved in such a non-syndromic form of tumor predisposition are difficult to identify, given the low incidence of osteosarcoma cases and the genetic heterogeneity of patients. We recently mapped a major OS susceptibility QTL to mouse chromosome 14 by comparing alpha-radiation induced osteosarcoma in mouse strains which differ in their tumor susceptibility.MethodsTumor-specific allelic losses in murine osteosacoma were mapped along chromosome 14 using microsatellite markers and SNP allelotyping. Candidate gene search in the mapped interval was refined using PosMed data mining and mRNA expression analysis in normal osteoblasts. A strain-specific promoter variant in Rb1 was tested for its influence on mRNA expression using reporter assay.ResultsA common Rb1 allele derived from the BALB/cHeNhg strain was identified as the major determinant of radiation-induced OS risk at this locus. Increased OS-risk is linked with a hexanucleotide deletion in the promoter region which is predicted to change WT1 and SP1 transcription factor-binding sites. Both in-vitro reporter and in-vivo expression assays confirmed an approx. 1.5 fold reduced gene expression by this promoter variant. Concordantly, the 50% reduction in Rb1 expression in mice bearing a conditional hemizygous Rb1 deletion causes a significant rise of OS incidence following alpha-irradiation.ConclusionThis is the first experimental demonstration of a functional and genetic link between reduced Rb1 expression from a common promoter variant and increased tumor risk after radiation exposure. We propose that a reduced Rb1 expression by common variants in regulatory regions can modify the risk for a malignant transformation of bone cells after radiation exposure.
In a recent study, we presented evidence for genetic predisposition governing radiation osteosarcomagenesis in mice. Following the incorporation of the bone-seeking a emitter 227 Th,~25% of the variance in osteosarcoma incidence was determined by inherited genetic factors. We have now mapped 5 susceptibility loci in crosses between the more susceptible BALB/c and the more resistant CBA/Ca strains. The major QTL on chromosome 14 overlaps with a locus that was already found in our previous study, using different strains of mice. Here, we investigate the effect by which the major susceptibility locus and 4 minor modifier loci interact to influence osteosarcoma predisposition. Following incorporation of the bone-seeking isotope, 100% of mice that harbour high-risk genotypes at all 5 susceptibility loci develop osteosarcoma with an average of 472 days latency times. In 10 mice inheriting exclusively low-risk genotypes only 1 osteosarcoma was found, arising after 733 days latency time. Inheritance of distinct combinations of BALB/c and CBA/Ca alleles at the susceptibility loci confer more extreme phenotypes in terms of susceptibility or resistance than observed in either of the two parental inbred strains. From the present study, we demonstrate that additive effects of multiple alleles, each making only a minor phenotypic contribution, can combine and significantly alter tumour risk. This mechanism can be of particular importance in genetically heterogeneous populations such as man. ' 2005 Wiley-Liss, Inc.
Osteosarcoma is the most frequent secondary malignancy following radiotherapy of patients with bilateral retinoblastoma. This suggests that the Rb1 tumour suppressor gene might confer genetic susceptibility towards radiation-induced osteosarcoma. To define the contribution of the Rb1 pathway in the multistep process of radiation carcinogenesis, we evaluated somatic allelic changes affecting the Rb1 gene itself as well as its upstream regulator p16 in murine osteosarcoma induced by (227)Th incorporation. To distinguish between the contribution of germline predisposition and the effect of a 2-hit allelic loss, two mouse models harbouring heterozygote germline Rb1 and p16 defects were tested for the incidence and latency of osteosarcoma following irradiation. We could show that all tumours arising in BALB/c×CBA/CA hybrid mice (wild-type for Rb1 and for p16) carried a somatic allelic loss of either the Rb1 gene (76.5%) or the p16 gene (59%). In none of the tumours, we found concordant retention of heterozygosity at both loci. Heterozygote knock-out mice for Rb1 exhibit a significant increase in the incidence of osteosarcoma following (227)Th incorporation (11/24 [corrected] in Rb1+/- vs. 2/18 in Rb1+/+, p=4×10(-5)), without affecting tumour latency. In contrast, heterozygote knock-out mice for p16 had no significant change in tumour incidence, but a pronounced reduction of latency (LT(50%) =355 days in p16+/- vs. 445 days in p16+/+, p=8×10(-3)). These data suggest that Rb1 germline defects influence early steps of radiation osteosarcomagenesis, whereas alterations in p16 mainly affect later stages of tumour promotion and growth.
We have performed a comparative study of allelic imbalances in human and murine osteosarcomas to identify genetic changes critical for osteosarcomagenesis. Two adjacent but discrete loci on mouse chromosome 9 were found to show high levels of allelic imbalance in radiationinduced osteosarcomas arising in (BALB/c6CBA/CA) F1 hybrid mice. The syntenic human chromosomal regions were investigated in 42 sporadic human osteosarcomas. For the distal locus (OSS1) on mouse chromosome 9 the syntenic human locus was identified on chromosome 6q14 and showed allelic imbalance in 77% of the cases. Comparison between the human and mouse syntenic regions narrowed the locus down to a 4 Mbp fragment flanked by the marker genes ME1 and SCL35A1. For the proximal locus (OSS2) on mouse chromosome 9, a candidate human locus was mapped to chromosome 15q21 in a region showing allelic imbalance in 58% of human osteosarcomas. We have used a combination of synteny and microsatellite mapping to identify two potential osteosarcoma suppressor gene loci. This strategy represents a powerful tool for the identification of new genes important for the formation of human tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.