Research focused in the present paper to evaluate the combustion, performance, and emission characteristics of refined biodiesel (refined biofuel) such as sunflower oil methyl ester (SOME) with the partial addition of n-butanol (butanol) in it. Various characteristics of butanol–SOME blends with varying volume percentage of butanol such as 5, 10, 15, and 20 in butanol–SOME blends were compared with the characteristics of neat SOME (100%) and neat diesel (100%). It is investigated that with an increase in butanol content from 5% to 20% in butanol–SOME blends at full load condition, brake-specific fuel consumption, and NOx emissions were increased by 11% and 43%, respectively, while brake thermal efficiency (BTE) was decreased by 8%. At full load condition, for all the selected fuels hydrocarbon (HC) emissions were found to be negligible, i.e., less than 0.12 g/kWh. Carbon monoxide (CO) emissions at full load condition for the four butanol–SOME blends were observed to be four to six times more than observed CO emissions in case of neat SOME and neat diesel. Various characteristics of all the selected fuels were compared in order to finalize the promising alternate sustainable renewable fuel. Thus, study reports the solution for increase in demand and price of shortly diminishing conventional diesel fuel which is widely used for power generation and also to reduce the serious issues concerned with environmental pollution due to usage of neat diesel.
The objective of present study is to evaluate the combustion, performance, and emission characteristics of refined biodiesel (biofuel) such as rubber seed oil methyl ester with the partial addition of n-butanol (butanol) in it in a single cylinder four stroke diesel engine operated at a constant speed of 1500 rpm. Various characteristics of butanol–rubber seed oil methyl ester blends with varying volume percentage of butanol such as 5, 10, 15, and 20 in butanol–rubber seed oil methyl ester blends were compared with the characteristics of neat rubber seed oil methyl ester (100%) and neat diesel (100%) at various load conditions on engine (such as 0%, 25%, 50%, 75%, and 100%) for the compression ratio 18. It is found that brake specific fuel consumption was increased by 17% with an increase in butanol content from 5% to 20% in butanol–rubber seed oil methyl ester blends at full load condition. Brake thermal efficiency was decreased by 14% with an increase in butanol content from 5% to 20% in butanol–rubber seed oil methyl ester blends at full load condition. Carbon monoxide and HC emissions were found to be negligible, i.e. less than 0.1% and 35 ppm, respectively, for all selected fuels. NOx emissions were decreased by 10% with an increase in butanol content from 5% to 20% in butanol–rubber seed oil methyl ester blends at full load condition. Various characteristics were compared for six fuels (neat rubber seed oil methyl ester, four renewable butanol–rubber seed oil methyl ester blends, and neat diesel) in order to finalize the promising alternate sustainable renewable fuel in place of shortly diminishing conventional diesel fuel in order to provide the solution for increase in demand and price of conventional fuel (diesel) for power generation and to reduce the serious issues concerned with environmental pollution due to usage of neat diesel.
In this study, different characteristics of sustainable renewable biodiesels (those have a high potential of their production worldwide and in India) were compared with the characteristics of neat diesel to determine optimistic biodiesel for the diesel engine at 250 bar spray pressure. Optimistic fuel gives a comparatively lower level of emissions and better performance than other selected fuels in the study. Rubber seed oil methyl ester was investigated as an optimistic fuel among the other selected fuels such as sunflower oil methyl ester, neem seed oil methyl ester, and neat diesel. To enhance the performance characteristics and to further decrease the level of emission characteristics of fuel ROME, further experiments were conducted at higher spray (injection) pressures of 500 bar, 625 bar, and 750 bar with varying ignition delay period via varying its spray timings such as 8°, 13°, 18°, 23°, 28°, and 33° before top dead center. Spray pressure 250 bar at 23° before top dead center was investigated as an optimistic operating condition where fuel rubber seed oil methyl ester gives negligible hydrocarbon emissions (0.019 g/kW h) while its nitrogen oxide (NOX) emissions were about 70% lesser than those observed with neat diesel, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.