The investigation aims to evaluate the impacts of commercial gasoline and gasoline surrogates on energy and exergy efficiencies in a spark-ignition engine. In this investigation, a new approach for formulating next generation gasoline surrogates is investigated through testing these surrogates in a multi-cylinder SI engine. Energy and exergy analyses were carried out using the primary reference fuel-methylcyclohexane (PRF-MCH) blend (82.88% iso-octane + 9.16% n-heptane + 7.96% methylcyclohexane), primary reference fuel with 1,2,4-Trimethylbenzen (PRF-1,2,4-TMB) blends (76% iso-octane + 9% n-heptane + 15% 1,2,4-Trimethylbenzene and 61% iso-octane + 9% n-heptane+ 30% 1,2,4-trimethylbenzene) and commercially available gasoline (gasoline) in an SI engine. The engine investigation results show that the PRF-MCH blend is a promising surrogate to reproduce the gasoline fuel engine characteristics such as combustion and emission characteristics of gasoline fuel. The detailed experiments were executed at the SI-engine speed conditions of 1500 rpm and 2500 rpm. It is found that PRF-MCH blend energy-exergy efficiencies are comparable to commercially available gasoline. It can also be concluded that engine testing in terms of energy-exergy analyses for proposed gasoline surrogates provides a qualitative and quantitative understanding of combustion behavior, emission characteristics, assessment of the effectiveness, and useful work potential gasoline surrogates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.