High viscosity is a major challenge with protein therapeutics at extremely high concentrations. To overcome this obstacle, it is essential to understand the relationship between the concentration of a protein solution and its viscosity as a function of shear rate and temperature. Here, lysozyme is a model charged globular protein having both short-ranged attraction (SA) and long-ranged repulsion (LR) that promote the formation of dynamic clusters at high concentrations. We report viscosity measurements from a micro-capillary rheometer (using only several microliters of solution) over a wide range of lysozyme solution concentrations, shear rates, and temperatures. Solution structural relaxation dynamics are also probed by dynamic light scattering (DLS). As a result of lysozyme's SALR interactions, the viscosity increased dramatically across all shear rates with increasing concentration and decreasing temperature. While most of the solutions exhibited Newtonian behavior, shear thinning was exhibited at the highest concentration (480 g/l) and lowest temperatures at shear rates above approximately 10(4 )s(-1). The onset shear rate for thinning and a structural relaxation rate estimated from a slow-mode measured by DLS are compared. These measurements provide insights into the properties of protein solutions and their microscopic structural origins.
Understanding the complex interplay of factors affecting nanoparticle accumulation in solid tumors is a challenge that must be surmounted to develop effective cancer nanomedicine. Among other unique microenvironment properties, tumor vascular permeability is an important feature of leaky tumor vessels which enables nanoparticles to extravasate. However, permeability has thus far been measured by intravital microscopy on optical window tumors, which has many limitations of its own. Additionally, mathematical models of particle tumor transport are often too complicated to be accessible to most researchers. Here, we present a more simplified and accessible mathematical model based on diffusive flux, which uses particle tumor accumulation and plasma pharmacokinetics to yield effective permeability, P eff. This model, called diffusive flux modeling (DFM), allows effects from multiple parameters to be decoupled and is also the first demonstration, to the best our knowledge, of extracting P eff values from bulk biodistribution results (e.g., routine positron emission tomography studies). The DFM equation was used to explain in vivo results of sub-20 nm nanocarriers called three-helix-micelles (3HM), particularly 3HM’s selective accumulation in different tumor models. When DFM was applied to multiple published biodistribution data, a semiquantitative comparison of various tumor models, particle size, and active targeting strategies could be made. The analysis clearly pointed out the importance of balancing multiple characteristics of nanoparticles to ensure successful treatment outcome and highlights the usefulness of this simple model for initial particle design, selection, and subsequent optimization.
The viscosity of a shear-banding wormlike micelle solution at high shear rates is investigated using capillary rheology and particle streak velocimetry. Measurements of the flow profile and pressure gradient show an extended entrance region, which exceeds a length to diameter ratio of 100, to reach a fully developed flow. We characterized this entrance region for capillaries with different cross-sections and use the results to select a downstream portion of the capillary where viscosity measurements can be made on fully developed flow. Measurements from this portion of the channel show a shear-thinning power-law behavior for all channel geometries from shear rates of 1000 s −1 to 120000 s −1 . Varying the surfactant concentration shows two distinct power-law behaviors that depend on both shear rate and concentration and are an indication of change in micelle length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.