In an internal combustion engine, twin entry turbine operates under different unequal admission conditions by feeding the turbine with a dissimilar amount of flow in each entry for a majority of the time. Despite of the impact on turbine performance, normal characteristic maps of these turbines are usually available only for full admission conditions. The current study
The current investigation describes in detail a mass flow oriented model for extrapolation of reduced mass flow and adiabatic efficiency of double entry radial inflow turbines under any unequal and partial flow admission conditions. The model is based on a novel approach, which proposes assimilating double entry turbines to two variable geometry turbines (VGTs) using the mass flow ratio ( MFR ) between the two entries as the discriminating parameter. With such an innovative approach, the model can extrapolate performance parameters to non-measured MFR s, blade-to-jet speed ratios, and reduced speeds. Therefore, the model can be used in a quasi-steady method for predicting double entry turbines performance instantaneously. The model was validated against a dataset from two different double entry turbine types: a twin-entry symmetrical turbine and a dual-volute asymmetrical turbine. Both were tested under steady flow conditions. The proposed model showed accurate results and a coherent set of fitting parameters with physical meaning, as discussed in this paper. The obtained parameters showed very similar figures for the aforementioned turbine types, which allows concluding that they are an adequate set of values for initializing the fitting procedure of any type of double entry radial turbine.
Turbocharger performance maps provided by manufacturers are usually far from the assumption of reproducing the isentropic performance. The reason being, those maps are usually measured using a hot gas stand. The definition of the effective turbocharger efficiency maps include the mechanical losses and heat transfer that has occurred during the gas stand test for the turbine maps and only the heat transfer for the compressor maps. Thus, a turbocharger engine model that uses these maps provides accurate results only when simulating turbocharger operative conditions similar to those at which the maps are recorded. However, for some critical situations such as Worldwide harmonized Light vehicles Test Cycles (WLTC) driving cycle or off-design conditions, it is difficult to ensure this assumption. In this article, an internal and external heat transfer model combined with mechanical losses model, both previously developed and calibrated, has been used as an original tool to ascertain a calculation procedure to obtain adiabatic maps from diabatic standard turbocharger maps. The turbocharger working operative conditions at the time of map measurements and geometrical information of the turbocharger are necessary to discount both effects precisely. However, the maps from turbocharger manufacturers do not include all required information. These create additional challenges to develop the procedure to obtain approximated adiabatic maps making some assumptions based on SAE standards for non-available data. A sensitivity study has been included in this article to check the validity of the hypothesis proposed by changing the values of parameters which are not included in the map data. The proposed procedure becomes a valuable tool either for Original Equipment Manufacturers (OEMs) to parameterize turbocharger performance accurately for benchmarking and turbocharged engine design or to turbocharger manufacturers to provide much-appreciated information of their performance maps.
Despite the importance of turbocharged engines with radial inflow dual-volute turbines, their characteristic maps and fully predictive modelling using 1D gas dynamic codes are not well established yet. The complexity of the unsteady flow and the unequal admission of these turbines, when operating with pulses of engine exhaust gas, makes them a challenging system. This is mainly due to the unequal flow admission, which generates an additional degree of freedom with respect to well-known single entry vanned or vaneless turbines. This paper has as a main novelty a simple procedure for characterizing experimentally and elaborating characteristic maps of these turbines with unequal flow conditions. This method of analysis allows for easy interpolation within the proposed characteristic maps or conceiving simple models for calculating and extrapolating full performance parameters of dual-volute turbines. Here, also described are two innovative 0D mean-line models that require a minimum quantity of experimental data for calibrating both: the mass flow parameter model and the isentropic efficiency model. Both models are predictive either in partial or unequal flow admission conditions using as inputs: the mass flow ratio between branches; the total temperature ratio between branches; the blade to jet speed ratio in each branch and the pressure ratio in each branch. These six inputs are generally instantaneously provided by 1D gas-dynamics codes. Therefore, the novelty of the model is its ability to be used in a quasi-steady way for dual-volute turbines performance prediction. This can be done instantaneously when turbines are calculated operating at turbocharged engines under pulsating and unequal flow conditions.
Nowadays, the turbocharger has become one of the key components for automotive spark-ignition engine improvements (fed with both liquid and gaseous fuels), as a support for the boosting and downsizing concept to reduce fuel consumption and exhaust emission. In gasoline engines, the usage of the waste-gate valve typically regulates the maximum boost pressure in the turbocharger system, to protect the engine and the turbocharger at high engine speeds. To improve the transient response at low engine speeds, two-stage turbocharger is widely used. Two-stage systems are composed of several valves to regulate the flow to control the boosting of the system. Like a bypass valve between the turbines, a check valve is present between the compressor and a waste-gate valve for the low-pressure turbines. This article deals with a methodology for characterizing the discharge coefficient of an electronic waste-gate valve in the turbocharger. To estimate the gas flow over the same in one-dimensional models, an empirical model is correlated and validated. For this, a constant-stream experimental work has been carried out on a test rig at different valve position openings, with high turbine inlet temperatures. Finally, an optimal map of discharge coefficient has been drawn out through interpolation method, which can integrate into the full one-dimensional turbocharged engine model system, to calculate the actual mass flow through the waste-gate valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.