Nanocrystalline diamonds, varying in size from 40 to 400 nm, with random faceting were grown without the help of initial nucleation sites on nickel substrates as seen by scanning electron micrographs. These carbonaceous films were deposited in a microwave plasma reactor using hexane/nitrogen based chemical vapour deposition. The substrate temperatures during deposition were varied from 400 to 600 °C. The morphological investigations obtained by scanning electron micrographs and atomic force microscopy revealed the presence of nanocrystallites with multifaceted structures. Micro Raman investigations were carried out on the deposited films, which conclusively inferred that the growth of nanodiamond crystallites seen in the scanning electron micrographs correlate with clear Raman peaks appearing at 1120 and 1140 cm−1. Nanoindentation analysis with atomic force microscopy has revealed that the carbonaceous deposition identified by the Raman line at ∼1140 cm−1, in fact, is related to nanodiamond on account of its hardness which was ∼30 GPa. X-ray diffraction data supported this fact.
a b s t r a c tDeposits of one dimensional nanowires of zinc with diameters of 90-120 nm have been obtained by means of dc sputtering within an electron cyclotron resonance plasma reactor. The sputtering has been made effective by using a negatively biased cylindrical target. The structure of the nanocrystalline wires deposited on glass substrates were investigated with scanning electron microscopy, transmission electron microscopy and scanning tunneling microscopy. STM revealed that the structure of the one dimensional nanowires are ensemble of nanoclusters and nanowires with diameter of 4-5 nm. The crystalline nature of the metallic nanowires was studied with X-ray and electron diffraction analysis. The native oxide present on the metallic wires was revealed by photoluminescent spectroscopy. Theoretical modeling has been used to explain the possible mechanisms operative inside the plasma which lead into deposition of zinc on the substrate starting from the precursor species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.