The research in Green tribology combines several areas including biomimetic tribomaterials and surfaces for controlled adhesion. Biomimetic surfaces mimic living nature and thus they are ecofriendly. The most famous biomimetic surface effect is the Lotus effect (reduction of water adhesion to a solid surface due to micro/nanostructuring of the solid surface). Several extensions of the Lotus effect have been discussed in the literature including the oleophobicity (repelling organic liquids such as oils), underwater oleophobicity to reduce fouling, and the shark skin effect (flow drag reduction due to specially oriented micro-riblets). Here we suggest a potentially important application of micro/ nanostructured surfaces in the biomedical area: the micro/nanostructure controlled adhesion in blood flow. Blood is a suspension, and its adhesion properties are different from those of water and oil. For many cardiovascular applications, it is desirable to reduce stagnation and clotting of blood. Therefore, both the underwater oleophobicuity and shark-skin effect can be used. We discuss how computational fluid dynamics models can be used to investigate the structure-property relationships of surface pattern-controlled blood flow adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.