We study the effect of small-amplitude fast vibrations and small-amplitude spatial patterns on various systems involving wetting and liquid flow, such as superhydrophobic surfaces, membranes and flow pipes. First, we introduce a mathematical method of averaging the effect of small spatial and temporal patterns and substituting them with an effective force. Such an effective force can change the equilibrium state of a system as well as a phase state, leading to surface texture-induced and vibration-induced phase control. Vibration and patterns can effectively jam holes in vessels with liquid, separate multi-phase flow, change membrane properties, result in propulsion and locomotion and lead to many other multi-scale, nonlinear effects including the shark-skin effect. We discuss the application of such effects to blood flow for novel biomedical 'haemophobic' applications which can prevent blood clotting and thrombosis by controlling the surface pattern at a wall of a vessel (e.g. a catheter or stent).This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
This paper develops a mathematical model for predicting the thermal response in the surgical drilling of bone. The model accounts for the bone, chip, and drill bit interactions by providing a detailed account of events within a cylindrical control volume enveloping the drill, the cut bone chip within the drill bit flute, and the solid bone. Lumped parameter approach divides the control volume into a number of cells, and cells within the subvolumes representing the drill solid, the bone chip, and the bone solid are allowed to interact. The contact mechanics of rough surfaces is used to model chip–flute and chip–bone frictional interaction. In this way, not only the quantification of friction due to sliding contact of chip–flute and chip–bone rough surface contact is treated but also the contact thermal resistances between the rubbing surfaces are included in the model. A mixed combination of constant and adaptive mesh is employed to permit the simulation of the heat transfer as the drill bit penetrates deeper into the bone during a drilling process. Using the model, the effect of various parameters on the temperature rise in bone, drill, and the chip is investigated. It is found that maximum temperature within the bone occurs at the location adjacent to the corner of the drill-tip and drill body. The results of the model are found to agree favorably with the experimental measurements reported within the existing literature on surgical drilling.
The research in Green tribology combines several areas including biomimetic tribomaterials and surfaces for controlled adhesion. Biomimetic surfaces mimic living nature and thus they are ecofriendly. The most famous biomimetic surface effect is the Lotus effect (reduction of water adhesion to a solid surface due to micro/nanostructuring of the solid surface). Several extensions of the Lotus effect have been discussed in the literature including the oleophobicity (repelling organic liquids such as oils), underwater oleophobicity to reduce fouling, and the shark skin effect (flow drag reduction due to specially oriented micro-riblets). Here we suggest a potentially important application of micro/ nanostructured surfaces in the biomedical area: the micro/nanostructure controlled adhesion in blood flow. Blood is a suspension, and its adhesion properties are different from those of water and oil. For many cardiovascular applications, it is desirable to reduce stagnation and clotting of blood. Therefore, both the underwater oleophobicuity and shark-skin effect can be used. We discuss how computational fluid dynamics models can be used to investigate the structure-property relationships of surface pattern-controlled blood flow adhesion.
Two-scale CFD modeling is used to design and optimize a novel endovascular filtration device for removing toxins from flowing blood. The Chemofilter is temporarily deployed in the venous side of a tumor during the intra-arterial chemotherapy in order to filter excessive chemotherapy drugs such as Doxorubicin from the blood stream. The device chemically binds selective drugs to its surface thus filtering them from blood, after they have had the effect on the tumor and before they reach the heart and other organs. The Chemofilter consists of a porous membrane made of microscale architected materials and is installed on a structure similar to an embolic protection device. Simulations resolving the microscale structure of the device were carried out to determine the permeability of the microcell membrane. The resulting permeability coefficients were then used for macroscale simulations of the flow through the device modeled as a porous material. The microscale simulations indicate that greater number of microcell layers and smaller microcell size result in increased pressure drop across the membrane, while providing larger surface area for drug binding. In the macroscale simulations, the study of idealized prototypes show that the pressure drop can be reduced by increasing the membrane's tip angle and by decreasing the number of membrane's sectors. Such design, however, can conversely affect the overall drug binding. By decreasing the concentration of toxins in the cardiovascular system, the drug dosage can be increased while side effects are reduced, thus improving the effectiveness of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.